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The Modified Free Access Protocol: An Access Protocol for

Communication Systems with Periodic and Poisson Traffic

INTRODUCTION

Present high speed communications protocols of the 1 to 50 megabit/second

range such as Ethernet, HYPERchannel, ProNET-10 and MIL-STD-1553B are use-

ful for many communications applications[IEEE83/NETW82/PROT86/MILS87].

The Ethernet and MIL-STD-1553B protocols have readily available commercial inte-

grated circuits to serve as channel interfaces which makes the use of these protocols

very attractive. The Ethemet, HYPER-Channel and ProNET-10 protocols are often

used for computer system communications between workstations and servers as well

as between host computers. The MIL-STD-1553B command/response protocol is

useful for communications systems with a central controller such as flight systems or

centralized data collection systems. These protocols represent the four basic access

types: contention, token passing, command/response and hybrid.

Many studies have been performed to determine the suitability of these proto-

cols in various communications systems. The basic trade-off is between average

access time and guarantee of access time and data delivery. Contention protocols

allow a station to transmit a packet whenever the channel is perceived as idle. This

allows minimum delay under light loads but also allows the possibility of collisions to

exist. Token passing protocols guarantee each station sole access to the channel for

a specified time during each cycle at the cost of requiring stations with traffic to wait

as the token is passed through stations that do not have traffic. These two access

types can be combined to form a hybrid protocol. An example of a typical hybrid proto-



col is HYPERchannel.In thisprotocolaperiodof prioritizedaccessis followed bya

periodof CSMA/ACK freeaccess.

Anotherhybrid protocolof noteis L-expressnetwhich wasdevelopedasa

communicationssubnetworkfor theC-NET project[BORG85].L-expressnetis

interestingin thatit is avirtual tokenpassingprotocolimplementedwith standard

Ethemetchipsandcountercircuits controllingthecarriersenseline. In additionto

theseprotocolsthedevelopmentof severalhybridprotocolsthatoffer improved

accessfor particularapplicationshasbeen presented in the literature[SPIES6/

TOKO77/NUTE84]. None of these protocols, however, provide adequately for a

communication system that has large periods of Poisson traffic and a small portion of

scheduled traffic. A communication system with this type of traffic could be served by

a communications protocol that provides a period of scheduled access followed by a

period of free access.

The purpose of this research is to attempt to apply LAN techniques to situa-

tions that are usually considered incompatible. The particular application of interest

is communication systems that have a majority of Poisson distributed communica-

tions but some scheduled heavy burst traffic as may be found in data collection sys-

tems and some real time applications. Emphasis will be placed on simple modifica-

tions of existing hardware. The objective of this research will be to minimally modify

the Ethernet standard protocol to service these applications.
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1 NETWORK ARCHITECTURES

In designing a data communication network to connect many data sources to

many hosts, the architecture of the interconnecfion network is chosen based on the

priorities of the data system. The priorities usually considered are: system reliability,

ease of change in system configuration, data latency, and ability to broadcast from one

station to all others. Sometimes the physical network chosen will prevent a desired

implementation. As an example, fiber optics are not well-suited to multitap bus

structures due to coupling losses incurred at each tap. Rather, fiber optics are better

suited to ring or star(cluster) architectures. The general architectures usually consid-

ered are the star(cluster), bus and ring. Figure 1.I illustrates these basic configura-

tions. These architectures reside in layer 1, the physical connection, of the ISO seven

layer data communication model as shown in Figure 1.2. Several committees, whose

purposes embrace the establishment of standards for communications, including

LAN's, have been appointed. These include the following:

NATIONALLY:

ANSI - American National Standards Institute Committee X3

EIA - Electronics Industry Association

NBS - National Bureau of Standards

IEEE - Local Network Committee (802)

FTS - Federal Telecommunications Standard 1003

INTERNATIONALLY:

CCIT/ITU - The Consultative Committee on International Telephony

and Telegraphy of the International Telecommunications Union, Study Group VII

ISO - International Standards Organization

3



a) BUS

b) RING

C) STAR(CLUSTER)

FIGURE 1.1 Network Architectures
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ECMA - European Computer Manufacturing Association

A seven layer reference model for distributed systems has been developed by

ANSI and ISO. It is described as:

Level 1 Physical Control - the actual means of bit transmission across a

physical medium (For example, Manchester Coding via a Coaxial Cable).

Level 2 - Link Control - defines the method for logical sequences of messages

to be reliably exchanged across a single physical data link (For example: addressing,

packet synchronization, etc.).

Level 3 - Network Control - provides the logical channels capable of routing

the message from source to destination via intermediate paths over several data links

on a "best effort" basis (For example: addressing, message synchronization from

one station through one physical data link (say fiber optic) to a second physical termi-

nal data link on a second media (say coaxial cable) to a destination with two address

codes required).

Level 4 - Transport End-to-End Control - provides links for many users

across the complete network topology (Error protocol, etc.).

Level 5 - Session Control - supports Level 4 by segmenting and blocking the

data required by Level 4 (For example, initiating check point recovery in the event of

network failure, etc.).

Level 6 - Presentation Control - provides the formatting of the data being

transmitted (Includes encrypting/decrypting, commanding/expanding, transforming

data formats, etc.).

Level 7 - Application - functions to be performed by the terminal. Provides for

terminal to terminal protocol (Line controller to Host computer data transfer). These

6



layers are usually accomplishedthrough the mechanismof appendingheadersto the

datathatis routedfrom (or to) theterminaldevice.

There are several network topologies which are applicable to general data

communicationsystems.Theseare the RING, BUS, and STAR topologieswhich are

discussedbelow and illustrated previously in Figure 1.1. Various other topologies

(cube and fully connected)are possible, but not implemented. They are either suit-

able to computer buses or to long haul networks rather than LAN's, or they have

properties peculiar to requirements for circuit switching or message switching rather

than packet switching.

1.1 RING

Some comments about the ring structure illustrated in Figure 1.1b are in

order. If the ring is broken it becomes cumbersome, often impossible, for all stations

to talk to each other since each station must receive, regenerate and transmit the

data to be passed to the next station. The protocol used is the main determinant of

system connectivity after the ring breaks. If token passing is used, there must be lost

token finding logic and default station logic added to each terminal so that the ring

becomes adaptive in nature. This is not only costly in dollars and power, but it

reduces reliability by adding circuitry which can fail. If command response is utilized,

then, in effect, the ring is a bus and must function as such. However, each station

must still receive the data, interrogate it for address and pass it on. Thus, the ring

necessitates a through connection rather than a parallel tap as in a true bus architec-

ture. This allows single point failures in the receiver/transmitter which contribute

directly to increased bit error rate and lowered reliability. Since each node must

regeneratively repeat the input, so as to retransmit to the next node, as well as pro-
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cessthe control of the network during its time as network host, each node must be

highly reliable. In remote systems which are unattended, this requires hardware

redundancy since failure of a node could be catastrophic. Changes to the network,

such as adding a terminal, must also be considered, since this results in disabling the

ring temporarily and also increases the time for a transmission to circulate around the

ring. Although repeaters with bypass switches may be used at each node to help

alleviate failure at a node, if the medium used to connect to each node (a cable or a

fiber optic cable, for instance), fails, this presents a serious problem. Dual connecting

media must be provided if reliability is a strong priority.

1.2 BUS

Bus topology is one of the most reliable of the three topologies considered.

There are potential problems, however, even with the bus topology. If the connecting

media link is lost, there will be failure of one part of the bus to communicate with the

other part. However, on the remaining bus structures, each terminal connected to one

or the other pieces of the bus, may still operate. A terminal failure, except for a short

circuit failure of the node at the bus, will not present any particular problems to the

remaining bus structure since a node is not required to regeneratively produce the

incoming data, as in a ring structure. The bus is a passive medium, with each node

listening and not playing a part in the communication of every message. This sug-

gests that a network constructed with a bus topology is inherently more reliable than

one constructed with a ring topology. Furthermore, this also allows a system configu-

ration change to be rather easy so long as sufficient addressing is available in the pro-

tocol. With proper design, the events of catastrophic disruption such as a lightning

strike or an errant cross connection to the power lines can be made to affect only the

8



nodeinvolved, be it ring or bus topology. With care,both topologiescanbemadereli-

able; but economicconsiderationsfavor a choice of the bus systemdue to its simpler

softwareproblems.

1.3 STAR (CLUSTER)

A star or cluster architecture is often inefficient in the amount of cable utilized

and the requirement for adding additional input/output (I/O) ports to the central host.

The star architecture is, however, tolerant of interconnect problems. If an intercon-

nect cable (which may be coaxial or fiber optic or microwave or any suitable media)

breaks, the loss is only that one station connected to the host by that interconnect.

Thus, if the system is tolerant to loss of a few of the connected stations, then the

interconnects, the transceiver hardware and the necessity of switch over logic is alle-

viated with the reduced cost and power and, to the extent of lower chip count, a small

gain in reliability. The protocol used for accessing will dictate a need for asyn-

chronous or synchronous timing. If synchronous timing is desired, it is necessary to

provide the clock to each station from the host. System configuration is easily

changed by addition of an I/O port at the host station and modification of software to

include the new addressing. It is necessary to plan ahead in choice of host expand-

ability, both in I/O port expandability, memory or buffer storage and power capability.

Sometimes host restrictions preclude additional system I/O ports; hence, additional

stations, and in this respect, a bus topology has an advantage.
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2 NETWORK PROTOCOLS

Network protocols are actually logical rule sets for accomplishing data commu-

nications over a given network regardless of the system architecture. In this regard,

main communication protocols are considered part of layer 2 (and sometimes extend

to layer 3) of the ISO seven layer data communication model. One of the basic proto-

cols is the free access on demand protocol (or contention protocol) based in part on

the ALOHA system which was f'u'st utilized for computer networking among the

Hawaiian Islands[ABRA70]. These protocols are usually modified versions of carrier

sense multiple access (CSMA) utilizing collision detection to aid in increasing data

throughput. Ethernet uses one such protocol. Another basic protocol is the com-

mand/response technique, which is the basis for MIL-STD-1553B[MILS87]. This

protocol has one smart control host, and all other stations must respond only when

requested by the control host. Token passing is a third basic type of protocol and is

similar to the command/response protocol in that the station holding the token is the

temporary control station. However, the station token holding time is limited. Gener-

ally this time limit is set by the station being assigned to one of three priority levels.

The token is passed to the next station after the current token holding station's time

expires. Naturally, all stations must contain software and hardware to regenerate

lost tokens, stop token "hogging" and to compensate for stations that die and cannot

pass a token. Protocols such as SDLC and asynchronous protocols are commonly

known and can be designed specifically for any system[INTE88]. There are many

media access methods. Some of these methods have been built and tested, some are

available as commercial systems, and some have been investigated only by simula-

tion and analytical means.
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2.1 CSMA.CD

Carrier-Sense Multiple Access combined with Collision

CD) represents a very attractive access scheme for a bus system.

Detection(CSMA-

Under this proto-

col, every station ready to transmit a packet must listen to the bus to find out whether

any transmission is in progress. If there is a transmission in progress, the station

defers its transmission until the end of the current transmission. In spite of carrier

sensing, packet collisions cannot be completely avoided because of the non-zero

propagation delay of the bus. Upon detection of a collision, transmission is aborted,

and the station reschedules its packet by determining a random retransmission inter-

val. To avoid accumulation of retransmissions (in other words, to achieve stability)

the retransmission interval is adaptively adjusted to the actual traffic load. For exam-

ple, ETHERNET uses the so-called Binary-Exponential-Backoff algorithm, which

means that the average of the retransmission interval is doubled every time a trans-

mission attempt for a certain packet ends in collision[DEC80/IEEE82]. Of course,

other control policies are also possible. The CSMA-CD behaves ideally as long as

the ratio of propagation delay to mean packet transmission time is sufficiently low. If

for reasonable traffic loads, this ratio exceeds 2% to 5% (as a rule of thumb), the

increasing collision frequency causes significant performance degradation, i.e.,

increasing transfer delay and decreasing throughput. For example, in a 10

Mbit/second bus with 2 km cable length, the propagation delay corresponds to approx-

imately 100 bit times. In this case, severe performance degradation is experienced if

the mean packet-length is 2 Kilobits or less. Data latency is a point of concern with

pure contention systems because there is no guarantee of packet delivery if the sys-

tem becomes very loaded. Simulation results indicate steeply rising packet delay
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times when the systemis loaded above 85% throughput[OKAD84]. Furthermore,

the throughput has beenshownto be a decreasingfunction (nonstablesystem)when

the old traffic to be retransmittedplus the new traffic to be transmitted(Offered Chan-

nel traffic) exceeds100%.

2.2 TOKEN RING

In a token ring, access to the transmission channel is controlled by passing a

permission token around the ring. When the system is initialized, a designated sta-

tion generates a free token which is passed around the ring until a station ready to

transmit holds the token and sends its packet onto the ring. At the end of its allowed

transmission time, a sending station passes the access permission to the next sta-

tion by generating a new free token. This implies that, depending on packet-length

and ring round-trip delay, multiple tokens can concurrently exist on the ring. Only one

of them, however, can be in the free state. From a reliability and recovery point of

view, it may be desirable never to have more than one token on the ring at a time.

This can be achieved in two different ways: (1) The sender of a packet does not issue

a new free token before it has received its own busy token, (2) The sender of a packet

issues a new free token when it has completely erased the packet. These modes of

operation differ in their performance characteristics which can be determined based on

the analysis of the mean queueing delay for cyclical single-serve queues with switch-

over delay. Simulation investigations have shown that the token ring performs well

over the whole range of parameters of interest in the local area network[OKAD84].

A necessary condition to achieve this behavior is that the latency per station is kept

as low as possible, especially if a large number of stations are attached or short pack-

ets are used. If the ring latency is low, no significant benefits can be drawn from
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allowing multiple concurrent tokenson the ring. However, for systemswith high

latency,multiple tokensappearnecessaryto achievegoodperformance.

2.3 COMMAND-RESPONSE

MIL-STD-1553B is a document that concerns a command-response local area

network[MILS87]. This system is bus oriented in topology and utilizes a central

node controller to direct the traffic flow on the bus from terminal to terminal. The net-

work is implemented in a twisted-pair-shielded coaxial cable medium at the present,

however, there have been successful fiberoptic implementations. The system is limit-

ed in the number of terminals that may be placed on a single bus. This limitation is

due to the 5-bit address code in the data link protocol. Hierarchical bussing may be

accomplished, but response time becomes a major factor and every addition of a termi-

nal requires a major reprogramming of the central controller. A guaranteed delivery of

messages coupled with deterministic data latency timing are distinct advantages of

this type of media access method. The protocol is suitable for high duty cycle termi-

nals rather than for bursty or low duty cycle terminals. The bus bandwidth is capable

of handling a one megabit data rate; but the protocol imposes some overhead on data

transmissions. A more detailed description of this protocol is given in the next sec-

tion.
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3 COMMON HIGH-SPEED PROTOCOLS

In order to determine what protocol is appropriate to service the given commu-

nications system, the available protocols should be studied.

In this section, four protocol/architectures for which hardware is commonly

available are presented in more detail. The four protocols are Ethemet/Bus, MIL-

STD-1553B Command Response/Bus, ProNET-10/Ring, and HYPERchannel/Bus.

The protocols' basic characteristics are presented along with the basic hardware

required for a standard station.

Emphasis will be placed on the Ethernet protocol because of its readily avail-

able hardware. MIL-STD-1553B will be studied in detail because it is a com-

mand/response protocol applicable to real time systems. The virtual token passing

protocols HYPERchannel and L-expressnet will be studied to determine if virtual

token passing should be part of the Modified Free Access Protocol. The ProNET

token ring is studied for completeness,

3.1 ETHERNET/BUS

Figure 3.1 illustrates a possible technique which could be used to implement

the network interconnection. The use of a contention protocol requires the provision

of software, buffer storage and the Ethernet hardware as illustrated.

Ethernet is a burst transmission protocol well suited to spasmodic transmis-

sion of data from each station. For Ethernet, the transmission requests are assumed

to be Poisson in distribution, and the data is transmitted in packets at a ten megabit

per second rate on the bus. The system is designed to be completely asynchronous

utilizing a Manchester coding format.

packet for synchronization.

A preamble is used at the beginning of each
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3.1.1 ETHERNET PROTOCOL

The Ethemet original baseband version was designed, developed, and patent-

ed by Xerox and was publicly announced in 1979[DEC80]. Since then, a cooperative

effort by Digital Equipment Corporation, Intel, and Xerox has produced an updated

Ethemet which is considered the de facto standard for cable-based Local Area Net-

works because it is very close to the IEEE 802.3 CSMA/CD standard[IEEE82]. The

Carrier Sense Multiple Access with Collision Detection (CSMA/CD) control tech-

nique is the more publicized method for bus/tree topologies and is compatible with the

IEEE 802 standard[IEEE82].

Ethemet is a multi-access, packet-switched communications channel which is

managed by the control technique CSMA/CD. It is used for carrying digital data

among locally distributed computing systems. A primary goal of the Ethernet specifi-

cation is compatibility. Ethemet was, in fact, the first to accomplish this by allowing

devices from different manufacturers to communicate directly with one another.

Using the CSMA/CD control technique, each station attached to the bus must

contend with other stations to access the bus. There is no central controller which

allocates access to the channel. Each station must listen (i.e., use carrier sense) to

determine whether the bus is free. A station must wait or defer its transmission until

the bus is quiet if another station is transmitting. After gaining access to the bus, the

transmitting station continues to monitor the medium to detect colliding transmis-

sions on the bus. This is also called " listen while talk. " This leaves open the pos-

sibility that two stations will see the channel free at the same time and both will

transmit into the supposedly open channel causing a collision. The resulting collision

is then detected by both stations and both cease transmission. Each station then

chooses a random backoff time as defined by the Exponential Backoff algorithm which
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canbeexpressedby:

where:

BP = R*T s, 0<R<2k-1

BP = backoff period

R = a random number

k = the smaller of 8, or the number of collisions experienced so far

during the current transmission

T s = slot time, a time slightly greater than the round-trip propagation

delay of the cable.

After each collision following the first, an Ethernet terminal will double the backoff

range (the range of possible values of R) for eight contentions until it is two hundred

and fifty-six times the slot time, and then leaves the backoff range at this value for

the next eight contentions. If a terminal experiences sixteen contentions in trying to

transmit a packet, it abandons the attempt and the packet is lost. Most Ethernet ter-

minals will inform the host of this condition and allow the host's transport layer soft-

ware to reschedule the packet or take other appropriate actions.

The station, after waiting the required backoff time, then waits until the bus is

idle for 9.6 microseconds and then attempts to retransmit the packet. The Ethernet

contention scheme works very well for systems that have Poisson distributed commu-

nications with an offered load of less than 3.33 megabits/second and continues to per-

form adequately for offered loads of up to 8.0 megabits/second. The major problem for

this protocol is that no guarantee of data latency may be made. This is because a sta-
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tionspacketcan continue to collide with other stationsuntil the retry limit is reached.

This lack of a guaranteedaccessto the bus is detrimental to the applicationof Ether-

net to a real time systemor to a systemthat hasheavy burstsof time critical periodic

traffic asmaybeseenin a datacollectionsystem.

3.1.2 DATA FORMAT AND STRUCTURE

Each station on the common coaxial cable must be able to transmit and receive

packets with the packet format and spacing as shown in Figure 3.2. A packet is made

up of various bytes with the last bit of each byte transmitted first, and the preamble

beginning a transmission. A packet may not exceed 1526 bytes or be less than 72

bytes. Included in each of these numbers is: 8 bytes for the preamble, 14 bytes for the

header, the data bytes, and 4 bytes for the CRC. The following defines each field of

the frame:

1) Preamble: 64 bits alternating l's and O's, and ending with two consecutive

l's. The preamble is used by the receiver to establish bit synchronization and then to

locate the first bit of the frame.

2) Destination Address: 48 bits specifying the station or stations which are to

receive the packet. The packet may go to one station, a group of stations, or broad-

cast to all. This is determined by the first bit: a 0 indicates one destination, and a 1

indicates multiple stations. If all 48 bits are set to 1, then the packet is broadcast to

all stations.

3) Source Address: 48 bits specifying the station which is transmitting the

packet.

4) Type Field: 16 bits identifying the type of higher level protocol associated

with the packet. This is used to interpret the following data field.
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5) Data Field: 46 to 1500 bytes of data or pad characters. A minimum combi-

nation of 46 bytes to ensure that the frame will be distinguishable from a collision

fragment.

6) CRC - Packet Check Sequence: 32 bits containing a redundancy check. The

check is defined by the generating polynomial:

G(x)=x32 +x26 +x23 +x22 +x16 +x12 +x 11 +xl0 +x 8+x 7+x 5+x 4+x 2+

x+l.

The CRC covers the address (destination/source), type, and data fields. The

fast transmitted bit of the destination field is the high-order term of the message

polynomial to be divided by G(x) producing remainder R(x). The high-order term of

R(x) is the flu:st transmitted bit of the Packet Check Sequence field. The algorithm

uses a linear feedback register which is initially preset to all 1 's. After the last data
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bit is transmitted, the contents of this register (the remainder) are inverted and trans-

mitted as the CRC field. After receiving a good packet, the receiver's shift register

contains:

11000111000001001101110101111011 (x 31 , ..., x0).

The Ethernet has an enforced waiting time on the bus of 9.6 microseconds,

which is the minimum amount of time which must elapse after one transmission

before another may begin. For one bit to travel from one end of the longest bus length

allowed to the other (the round-trip propagation delay time) requires 51.2 microsec-

onds. If any station receives a packet or bit sequence shorter than 72 bytes, the infor-

mation is discarded and considered a collision fragment.

3.1.3 HARDWARE CHARACTERISTICS

The following section contains a brief overview of the hardware aspects of the

Ethemet network system. Discussed here are: channel encoding, carrier detection,

and the transceivers.

Manchester encoding is used on the coaxial cable. It has a 50% duty cycle and

insures a transition in the middle of every bit cell (data transition). The first half of

the bit contains the complement of the bit value while the second half contains the

true value of the bit.

The presence of data transitions indicates that the carder is present. If a tran-

sition is not seen between 0.75 and 1.25 bit times past the center of the last bit cell,

then the carder has been lost, indicating the end of a packet. For purposes of defer-

ring transmission, the term cartier means any activity on the cable. Specifically, it is

any activity on either receive or collision detect signals in the last 160 nanoseconds

(see Figure 3.3).
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At each station using the network, there are cables with taps which connect to

a transceiver. The transceiver receives all signals on the cable, but only those

addressed to it are accepted for action. The transceiver also is the device which

transmits signals sufficiently strong to propagate the information from one end of the

cable to the other. That is, every transmission on the cable will reach each transceiv-

er.
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The transceiver is designed so that if it fails, the faulty device does not jam or

pollute the Ethernet cable. The devices are also built simply and are relatively inex-

pensive so that replacement of failed parts may be accomplished quickly. If a

transceiver fails, it disconnects itself from the cable. The transceiver also contains a

watchdog timer circuit which detects incorrect behavior and shuts down the transmit-

ter in this event. The maximum number of stations which may be attached to the

cable is I000 stations spaced at least 2.5 meters apart to reduce the chance that

objectionable standing waves will result.

Each Ethernet interface will require software and hardware. General interface

software is usually available from the manufacturer but additional code is required to

tailor the system to the specific application. The hardware required to implement an

Ethemet terminal is a controller chip, a serial interface chip, a transceiver chip,

transceiver cable, coaxial cable and a special cable TAP as illustrated in Figure 3.1.

The estimated cost of components for a standard terminal is (10 MHz plastic chips):
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3.2 MIL-STD-1553B (COMMAND/RESPONSE BUS)

MIL-STD-1553B establishes requirements for digital, command/response,

time division multiplexing (Data Bus) techniques. It encompasses the data bus line

and its interface electronics as illustrated in Figure 3.4. It also defines the concept of

operation and information flow on the multiplexed data bus as well as the electrical

and functional formats to be employed.

This section provides the reader who is not familiar with the MIL-STD-1553B

protocol sufficient background to be able to follow the content of the remaining por-

tions in this section. The Multiplex Application Handbook is used as reference for

this section.[MILS87]

Because a Command/Response protocol is highly structured, unlike Ethemet,

it is necessary to fully describe the protocol and the types of terminals allowed by

MIL-STD-1553. A " terminal " in MIL-STD-1553 parlance is " The electronic mod-
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ule necessary to interface the data bus with the subsystem and the subsystem with

the data bus ... " There are only three functional types of terminals: the bus con-

troller, the bus monitor, and the remote terminal. The definition of the terminal as

an electronic module should convey the notion of a unit that contains digital logic as

a minimum and may frequently contain microprogrammed LSI or a microcomputer. A

terminal serving as a bus monitor or bus controller must usually rely on a connection

to and a dependence on a minicomputer for functional performance. Significant digi-
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tal complexity is requiredbecauseMIL-STD-1553B specifiesresponsetime and data

storagerequirementsthat require dedicateddigital hardware. A possible hardware

configurationthat could be usedto serveaseither a buscontroller, a busmonitor, or a

remoteterminal is presentedin Figure3.5.

3.2.1 THE BUS CONTROLLER

The bus controller is the terminal assigned the task of initiating information

transfers on the data bus. Another requirement is that the bus controller have sole

control of information transmission on the bus.

The MIL-STD-1553B defines a bus monitor as a terminal assigned the task of

receiving bus traffic and extracting selected information to be used at a later time.

Frequently, bus monitors are used for instrumentation. Any terminal that is neither a

bus controller nor a bus monitor is a remote terminal.

MIL-STD-1553B is a serial digital bus. The data transfer on the bus is half

duplex; that is, data may be transferred over the bus in either direction over a single

line, but not in both directions on that line simultaneously. The transmission bit rate

on the bus is 1.0 megabits per second. The data code is defined to be Manchester II

hi-phase level. A logic one will be transmitted as a bipolar coded signal 1/0 (i.e., a

positive pulse followed by a negative pulse). A logic zero will be a bipolar coded sig-

nal 0/1 (i.e., a negative pulse followed by a positive pulse). A transition through zero

occurs at the midpoint of each bit time as shown in Figure 3.6. Independent terminals

connected to the bus operate asynchronously because of the use of an independent

clock source in each terminal for message transmission. Decoding is achieved in the

receiving terminals by use of clock information derived from the message.
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Data transfers over the bus are accomplished as a sequence of words. Each

word is a sequence of 16 bits plus 3 bit times of sync and a parity bit for a total of 20

bit times. There are three types of words: command, status, and data as shown in

Figure 3.7.

3.2.2 WORD TYPES

a, Command Word

A command word is comprised of a sync waveform, remote terminal address

field, transmit/receive (T/R) bit, subaddress/modefield, word count/mode code field,

and a parity (P) bit as shown in Figure 3.7. The command sync waveform is an

invalid Manchester waveform as shown in Figure 3.7. The width is three bit times,

with the sync waveform being positive for the first one and one-half bit times and

then negative for the following one and one-half bit times.

The next five bits following the sync is the RT address. Each RT must be

assigned a unique address. Decimal address 31 (11111) will not be assigned as a

unique address. In addition to its unique address, an RT will be assigned the address

31 (11111) as a common address if the broadcast option is used. Each remote termi-

nal is responsible for responding when its unique address is transmitted as part of a

command word on the data bus by the active bus controller.

The next bit following the remote terminal address is the T/R bit, which indi-

cates the action required of the RT. A logic zero indicates the RT is to receive while a

logic one indicates the RT is to transmit.
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DB: DYNAMIC BUS CONTROL ACCEPTANCE

TF: TERMINAL FLAG

FIGURE 3.7 MIL-STD-1553B Word Format
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The next five bits following the T/R bit arc utilized to indicate an RT subad-

dress or use of optional mode control. The subaddress/mode values of 00000 and

11111 are reserved for optional mode control. The mode code control is used only to

communicate with the multiplex bus related hardware and to assist in the manage-

ment of information flow. It will not be used to extract data from or feed data to a

functional subsystem. Optional subaddress/mode code of 000(_ or 11111 will imply

that the contents of the word count field are to be decoded as a five bit mode com-

mand.

The next five bits following the subaddress/mode control indicate the number

of data words to be either sent out or received by the RT or the optional mode code as

specified in the previous paragraph. A maximum of 32 data words may be transmitted

or received in any one message block. All l's will indicate a decimal count of 31 and

all O's will indicate a decimal count of 32. The last bit in the command word is used

for parity over the preceding 16 bits; odd parity is utilized.

b. Status Word

A status word is comprised of a sync waveform, RT address, message error

bit, instrumentation bit, service request bit, three reserved bits, broadcast command

received bit, busy bit, subsystem flag bit, dynamic bus control bit, terminal flag bit,

and a parity bit as shown in Figure 3.7.

The status word sync waveform is the same as the command word sync. The

next five bits following the sync contain the address of the RT which is u'ansmitting

the status word as indicated in Figure 3.7.

The status word bit at bit time nine (Figure 3.7) is utilized to indicate that one

or more of the data words associated with the preceding receive command word from
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the bus controller has failed to pass the RT's validity tests. The validity tests are

explainedlater in this section. A logic one indicatesthe presenceof a messageerror

while a logic zero showsits absence.The statusword bit at bit time 10 (Figure 3.7)

is reservedfor the instrumentationbit and will alwaysbe a logic 0. This bit is intend-

ed to be usedin conjunctionwith a logic one in bit time 10 of the commandword to

distinguishbetweena commandword and a statusword. The status word bit at bit

time 11 (Figure 3.7) is reservedfor the service requestbit. The use of this bit is

optional. This bit, whenused,indicatesthe needfor the bus controller to takespecific

pre-definedactionsrelative to either the RT or associatedsubsystem. Multiple sub-

systems,interfacedto a singleRT, which individually require a servicerequestsignal

will logically OR their individual signalsinto the singlestatusword bit. In the event

this logical OR is performed, the designermust make provisions in a separatedata

word to identify the specific requestingsubsystem.The service requestbit is intend-

ed to beused only to trigger data transferoperationswhich take place as an excep-

tion ratherthanon a periodic basis. A logic onewill indicate the presenceof a service

requestand a logic zero its absence. If this function is not implemented,the bit

shouldbesetto zero.

The statusword bits at bit times 12 through 14are reservedfor future useand

shouldnotbeused.Thesebits shouldbesetto a logic zero.

The statusword bit at bit time 15 is set to a logic one to indicatethat thepre-

cedingvalid commandword wasa broadcastcommandwhile a logic zero indicatesit

was not a broadcastcommand. If the broadcastcommandoption is not used,this bit

shouldbesetto a logic zero.

The statusword bit at bit time 16 (Figure 3.7) is reservedfor the busy bit.
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The useof this bit is optional. This bit, when used,indicates that the RT or subsys-

tem is unableto movedatato or from the subsystemin compliancewith the bus con-

troller's command. A logic one will indicate the presenceof a busy condition and a

logic zero the absenceof a busy condition. In the event the busy bit is set in

responseto a transmitcommand,then the RT will transmit its status word only. If

this functionis not implemented,thebit shouldbesetto logic zero.

The statusword bit at bit time 17 (Figure 3.7) is reservedfor the subsystem

flag bit. The useof this bit is optional. This bit, when used,will flag a subsystem

fault condition and alert the buscontroller to potentially invalid data. Multiple sub-

systems,interfacedto a singleRT, which individually requirea subsystemflag bit sig-

nal will logically OR their individual signals into the single status word bit. In the

event this logical OR is performed,then the designermustmakeprovisions in a sepa-

rate dataword to identify the specific reporting subsystem.A logic one indicates the

presenceof the flag, while a logic zero indicates its absence. If not used, this bit

shouldbesetto logic zero.

The statusword bit at bit time 18 (Figure 3.7) is reservedfor the acceptance

of dynamic buscontrol. This bit is used if the RT implementsthe optional dynamic

buscontrol function. A logic one will indicateacceptanceof control and a logic zero

will indicate rejectionof control. If this function is not used,this bit should be set to

logic zero.

The statusword bit at bit time 19 (Figure 3.7) is reservedfor the terminal flag

function. Theuseof thisbit is optional. This bit, whenused,will flag an RT fault con-

dition. A logic one indicatesthe presenceof the flag, anda logic zero, its absence. If

notused,thisbit shouldbesetto logic zero.
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The last bit in the statusword is used for parity over the preceding 16 bits.

Oddparity will beutilized.

c. Data Word

A data word is comprised of a sync waveform, data bits, and a parity bit as

shown in Figure 3.7. The data sync waveform is an invalid Manchester waveform as

shown in Figure 3.7. The width is three bit times, with the waveform being negative

for the f'trst one and one-half bit times. Note that if the bits preceding and following

the sync are logic ones, then the apparent width of the sync waveform is increased to

four bit times.

The 16 bits following the sync are utilized for data transmission. The last bit

in the data word (bit time 20, Figure 3.7) is used for parity over the preceding 16 bits.

Odd parity is utilized. Data words are used to transmit information, control, and state

data. Data words are distinguished from command and status words by the inverted

three-bit sync pattern.

3.2.3 DATA TRANSFERS

a. Data Bus Operation

The multiplex data bus system will function asynchronously in a com-

mand/response mode, and transmission occurs in a half-duplex manner. Sole control

of information transmission on the bus resides with the bus controller which will initi-

ate all transmissions. The information flow on the data bus is comprised of messages

which are, in turn, formed by three types of words (command, data, and status).

A single message is the transmission of a command word, status word, and

data words if they are specified. For the case of a remote terminal to remote terminal

(RT to RT) transmission, the message will include two command words, two status
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words, and associated data words.

The messages transmitted on the data bus will be in accordance with the for-

mats on Figure 3.8 and Figure 3.9. The bus controller is responsible for providing a

minimum Intermessage gap of 4.0 microseconds(_tsec) as shown on Figures 3.8 and

3.9. This time period is measured from the mid-bit zero crossing of the last bit of the

Bus Controller to
Remote Terminal

Lcommand Word I Data Word

Source: Bus Controller

Data Word
Status Respon_ FI

Source: Single Receiver

Remote Terminal
to Bus Controller

Source: Bus Controller Source: Single Receiver.

Data Word
Data Word I []

Remote Terminal to
Remote Terminal

Source: Bus Controller Source: Receiver B

Data Word Data Word

Status Response] []

Source: Receiver A

FIGURE 3.8

[] End of Message Delay or Gap
Response Time Delay or Gap

MIL-STD-1553B Receiver

Data Message Format
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BUS CONTROLLER TO REMOTE TERMINALS

COMMAND

WORD

DATA

WORD

DATA
WORD

DATA
WORD D

SOURCE: BUS CONTROLLER

ADDRESS: 11111

SUBADRESS: UNIQUE = 11111 OR 00000

WORD COUNT: 1-32

T/R: RECEIVE

REMOTE TERMINAL TO REMOTE TERMINALS

COMMAND

WORD

COMMAND

WORD

STATUS

RESPONSE

DATA

WORD

DATA

WORD

SOURCE: BUS CONTROLLER _ SOURCE: RECEIVER A

ADDRESS: 11111

SUBADRESS: UNIQUE = 11111 OR 00000

WORD COUNT: 1-32

T/R: RECEIVE SOURCE: BUS CONTROLLER

ADDRESS: UNIQUE A

SUBADRESS: UNIQUE = 11111 OR 00000

WORD COUNT: 1-32

T/R: TRANSMIT

['] END OF MESSAGE DELAY OR GAP

RESPONSE TIME DELAY OR GAP

FIGURE 3.9 MIL-STD-1553B Multiple
Receiver Data Message Format
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preceding messageto the mid-zero crossing of the next command word sync as

shownin Figure 3.10. A remoteterminal will respondto a valid commandwithin the

time period of 4.0 to 12.0microseconds. This time period is shown as T on Figure

3.10. Different messageformats transmittedon the busareexplained in the following

paragraphs.

b. Bus Controller to Remote Terminal Transfers

The bus controller will issue a receive command followed by the specified num-

ber of data words. The RT will, after message validation, transmit a status word back

PARITY BIT COMMNAND/ STATUS/ SYNC

BIT TIME 19 20 2 3

+VOLTS _/'_

0

-VOLTS _

I

I t

_ o
,.ool

p _

i I
o _

L

i
t

d

T

/ /

FIGURE 3.10 MIL-STD-1553B Intermessage Gap
and Response Time
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to the controller. The command and data words will be transmitted in a contiguous

fashion with no interword gaps.

c. Remote Terminal to Bus Controller Transfers

The bus controller will issue a transmit command to the RT. The RT will, after

command word vaLidation, transmit a status word back to the bus controller, followed

by the specified number of data words. The status and data words will be transmitted

in a contiguous fashion with no interword gaps.

d. R_mote Terminal to Remote Terminal Transfers

The bus controller will issue a receive command to RT A followed contiguously

by a transmit command to RT B. RT B will, after command verification, transmit a

status word followed by the specified number of data words.

words will be transmitted in a contiguous fashion with no gap.

the data transmission by RT B, RT A will transmit a status word within the specified

time period.

¢. Bus Controller to Remote Terminal(s) Transfer (broadcast)

If the bus controller desires to transfer data to all remote terminals with the

broadcast option, then the bus controller issues a receive command word with 11111

in the RT address field followed by the specified number of data words. The command

word and data words are transmitted in a contiguous fashion with no gap. The RT(s)

with the broadcast option will, after message validation, set the broadcast command

received hit in the status word but will not transmit the status word.

f, Remote Terminal to Remote Terminal(s) Transfers tbroadcasO

The bus controller may allow two remote terminals to communicate. To

accomplish this the bus controller will issue a receive command word with 11111 in
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the RT addressfield followed by a transmit command to RT A using the

address. RT A specifiesthe numberof data words.

transmitted in a contiguous fashion with no gap.

RT's

The status and data words are

The RT(s) with the broadcast

option, excluding RT A and after message validation, will set the broadcast received

bit in the status word but will not transmit the status word.

g. Error Rate

The terminal will exhibit a maximum word error rate of one part in 109 on all

words received by the terminal, after validation of sync bits, bit count, Manchester II

code and odd parity, when operating in the presence of additive white Gaussian noise

distributed over a bandwidth of 1.0 kHz to 4.0 MHz at an RMS amplitude of 140 mV

for transformer coupled buses. Any fault which causes the message error bit to be

set in the terminal's status word, or one which causes a terminal to fail to respond to

a valid command, is counted as a word error. It should be noted that this specification

sets the upper bound on the word error rate. Typically, the error rates are an order or

two of magnitude lower. A CRC check may be added in the form of additional data

words at the end of a group of data words. However, the gain in performance would

be minimal since parity checks are used on a word-by-word basis. An error correct-

ing technique has been devised for MIL-STD-1553B.

3.2.4 TERMINAL COST

Each terminal will require software and hardware. The cost of the hardware

required to implement a typical Remote Terminal or Bus Controller is approximately:
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PCBoardand Misc. $100.O3

1 Microprocessor Controller 442.00

1 Memory (16K)

1 1553 Transceiver Chip

1 Transformer Tap

Connection Cable

280.00

650.00

35.00

10.00

Terminal Cost $1517.00

3._ THE ProNET PROTOCOL

ProNet was developed by Proteon Inc. for use on the model p1200 Multibus

LAN. The information in this section is based on information found in the "Operation

and Maintenance Manual for the ProNet Model p1200 Multibus Local Network Sys-

tem" [PROT84]. ProNet operates on a classic ring or "star-shaped" ring, in which

terminals are connected to the ring through a "wire center", which in the case of a ter-

minal failure, can make the necessary connections to bypass that terminal, leaving the

ring intact. These two configurations are shown in Figure 3.11. For additional reli-

ablility, each ProNet ring is actually two counter-rotating rings, i.e., one ring in which

data flows clockwise, and another in which data flows counterclockwise. If one ring

should fail, communication can then take place on the other ring in a procedure known

as "switch-back". If both rings should break at the same place (for example, a physi-

cal break or a terminal failure) then the terminals on either side of the break can go

into "loop-back", that is, connect the counter-rotating rings into one large ring,

bypassing the break. Counter-rotating rings, switch- and loop-back are illustrated in

Figure 3.12. The basic terminal block diagram is shown in Figure 3.13.
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"Classic" Ring

FIGURE 3.11

I

"Star-shaped" Ring

ProNET Ring Configurations
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Normal Counter-Rotating Rings

By

I IL

Switch-Backed Rings

Loop-Backed Rings

Data Path_

Unused Paths-----_

Broken Paths-_ _-

FIGURE 3.12 ProNET Ring Configurations
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UP TO 2.5 KILOMETERS
r I

RX1 RX2 TX 1 TX2

FIBER OPTIC CABLE
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FIBER OPTIC
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(OPTICAL
TRANSCEIVER)
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CONTROL
LOGIC

Parent
INTERFACE
(DIFFERENTIAL
TRANSCEIVER

FIBER OPTIC
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TRANSCEIVER)

I
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INTERFACE
(DIFFERENTIAL
TRANSCEIVER

TO HOST OR
WIRE CENTER

TO HOST OR
WIRE CENTER

FIGURE 3.13 ProNET Terminal
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3.3.1 ProNET CONTROL WORD AND MESSAGE FORMATS

As shown in Figure 3.14, the token consists of the "flag" (a zero followed by

a string of seven ones), and two additional ones. When a terminal that has no data to

send receives the token, it passes or "repeats" it to the next terminal in the ring.

If a terminal does have data to be transmitted, it changes the last bit of the

token to 0, thus making it a Beginning of Message (BOM) character. It then adds

eight bit source and destination address bytes, its data or "message" (up to 2044

eight-bit bytes), an End of Message (EOM) character consisting of the flag and an

additional zero, a parity check bit, a message refused/accepted status bit, set initially

to 1, and finally, a control character indicating the end of the packet, either a BOM of

another packet, or the token. The packet format is shown as Figure 3.15.

In order to assure that no control character occurs in the message data,

ProNet employs "bit stuffing." While creating a packet for transmission, if a terminal

detects a stream of six consecutive ones, it "stuffs" a zero into the data behind them,

insuring that the seven l's of the flag will never occur in the data message. This

stuffed zero will be removed by the addressed terminal as it "copies" the data from

the ring into a buffer for its own use.

When a terminal recognizes its address as the destination address in a data

packet, it copies the message part of the packet into a buffer for its own use, and then

sends the packet back onto the ring, resetting the message refused/accepted status

bit to zero. If a terminal is for some reason unable to copy data addressed to it, it

repeats the packet along the ring, leaving the message refused/accepted bit set at 1.

When a terminal detects a data packet which it had previously transmitted, it

removes it from the ring, leaving only the token or the BOM of the next message.
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Beginning of Message (BOM)

1 1 1

Flag

End of Message (EOM)

Flag 0

Token

Flag 1111
FIGURE 3.14 ProNET Control Character Format

Time

[ BOM 18Bit Destin-I 8 Bit Source I Data'-_
ation Addres t Address I Bytes l

MSG Parity Bit

Refused/Accepted Bit

l

BOM or[ Next Packet
Token [ or No Data

FIGURE 3.15 ProNET Packet Format
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Depending on the application, the terminal may monitor the message

refused/accepted bit and retransmit its data (if necessary) upon again receiving the

token.

In order for the ring to recover from errors such as the loss of a token or pack-

et, each terminal is equipped with three hardware timers: the token timer, the flag

timer, and the message lost timer. The token and flag timers track the amount of time

between the detection of a token or the flag respectively. If either of these counts

exceed a set amount, the terminal will "re-initialize" the ring by generating and

repeating a token. If two or more terminals try to re-initialize the ring within 500

t.tseconds of each other, a collision will occur and the ring will still be without a token.

Upon the detection of a collision, the token and flag timers will be reset, leaving it for

another terminal to re-initialize the ring. Proteon Inc. has determined that collisions

during re-initialization are very unlikely.

The message lost timer serves a different function. After a terminal has trans-

mitted a packet, it repeats no other data along the ring until it detects its own packet

which indicates that the packet has made it successfully around the ring. This is to

remove "noise" from the ring. The message lost timer begins counting when a packet

is transmitted and resets when that same packet is again detected. If the message

lost timer exceeds a set count (determined by the maximum amount of time required

for a packet to entirely circle the ring), it is assumed that the packet is lost and the

terminal resumes repeating all data that comes into it. Depending on the application,

the terminal may or may not attempt to retransmit the lost packet upon receiving a

token.

3.4 THE HYPERchannei PROTOCOL:

The HYPERchannel protocol is, like Ethernet, a CSMA protocol. This means

that each terminal "listens" to the medium, in this case a bus, and transmits only
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when the bus is free. HYPERchannelis unlike Ethernet,in that it does not employ

collision detection. Instead,it usesmessageacknowledgments,severaldelay types,

and prioritized terminals to ensurethat only very short messageswill experiencea

collision.

3.4.1 HYPERchannel DELAY SEQUENCE

In order to avoid collisions, after the bus becomes idle, HYPERchannel

employs a sequence of delays during which only certain terminals may transmit. That

sequence of delays is as follows:

a) Fixed Delay

During this time, the terminal which received the previous transmission sends

a response frame (to be described later) to the terminal from which it received the

transmission. All other terminals experience a delay, whose length is described by

the equation:

Fixed Delay = 4 nanoseconds x (trunk length in feet) + 2.08 microseconds

which is slightly greater than twice the amount of time it takes for a signal to propa-

gate the entire length of the bus and back.

b) N-Delay

In HYPERchannel, each terminal is assigned a unique priority used in deter-

mining the amount of time it must wait after the fixed delay before it may transmit, or

its N-Delay. The N-Delay of each terminal may be expressed by the following equa-

tions:

N-Delay(K) = N-Delay(K-l) + 4 nanoseconds x d + 1.6 microseconds, K = 1,2, .... L
N-Delay(I) = 4.8 microseconds

where

K = priority index of the terminal
L = the number of terminal

on the bus
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d = thedistancein feetfrom
theterminalof priority
K-1 to theterminalof
priority K

Thus, each terminal is guaranteeda period of 1.6 I.tsecondsin which it may initiate a

transmissionguaranteedto be without collision. It is important to note that terminals

with low priority indexesareableto transmitmore often than terminalswith high pri-

ority indexes. The times in which terminals are guaranteedcollision-free transmis-

sionarecollectively referredto astheschedulingperiod.

c) End Delay

After the scheduling period, each terminal must wait an additional time period

before it may begin transmission. During this time, the terminal listens to the bus

medium to insure that the terminal with the lowest priority, that is, the terminal with

priority index, L, has not begun a transmission. This listening period is referred to as

the end delay, and its length for each terminal may be expressed by the equation:

End Delay(K) = N-Delay(L) + 4 nseconds x d' + 1.6 t.tseconds, K=l,2 ..... L-1

where L and K are def'med the same as for N-Delay, but d' is defined as the distance

in feet from the terminal of priority index K to the terminal farthest from it.

After the end delay comes the contention period in which any terminal may

transmit if it senses that the bus is idle. This is the only time when collisions can

occur. HYPERchannel terminals do not detect collisions but instead rely on an

acknowledgment from the terminal to which their transmission was addressed during

the fixed delay period. If this acknowledgment does not arrive, they know their trans-

mission was unsuccessful.

3.4.2 THE WAIT FLIP-FLOP

To prevent high-priority terminals from dominating the bus medium, each ter-

minal is equipped with a wait flip-flop that is set when a terminal completes a trans-
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mission and cleared at the beginning of the contention period. A terminal may not

transmit when its walt flip-flop is set. The wait flip-flop of any individual terminal

may be disabled if necessary, depending on its application.

_,4,_ HYPEReh_nnfl FRAME S AND SEQUENCES

The smallest unit of data transmitted by a HYPERchannel terminal is called

the frame. There are three types of frames: transmission, response, and message-

and-data frames. The function of each is described below:

a) Transmission Frames

Transmission frames are used for "handshaking", i.e., the exchange of control

and status information between two terminals. The terminology used in this report

often differs from that used by Network Systems Corporation, the manufacturers of

HYPERchannel systems. When this is the case, the equivalent Network Systems

Corporation term will be placed in parentheses after the given term. The transmis-

sion frames axe listed and described below:

1) Request Status, RS (Copy Registers): The request status frame is

used by a terminal to see if a terminal to which it wishes to transmit is capable of

receiving the transmission. In frame sequences, the request status frame captures

the bus for the transmission of subsequent frames.

2) End Message Proper, EMP (Clear Flag 8): This frame is sent by a

transmitting terminal to indicate to the receiver that it has completed a message prop-

er frame (to be described below). Hag 8 in the receiver is set when it is waiting for a

message proper and cleared by the transmitting terminal when the complete message

proper has been transmitted.

3) Prepare for Associated Data, PAD (Set Flag A): This frame alerts

the receiving terminal that after the message proper, associated data frames (to be

explained below) will follow.
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4) Readyfor AssociatedData, RAD (Clear Flag 9): After a terminal

receivesa PAD frame,it must preparebuffer spacein order to receive the associated

data. When it hasdonethis, it sendsa RAD frame to the terminal which sent it the

PAD. A terminal will not transmit associateddata framesto their destinationtermi-

nal until thedestinationterminalsendsit aRAD.

5) End of AssociatedData, EAD (ClearFlag A): This frame is trans-

mitted by a terminal to indicate to the receiver that therewill be no more associated

dataframes.

6) RequestVirtual Circuit, RVC (Set ReserveFlag): This frame is

sentby a terminal whenit requiresa virtual circuit connection(to be describedlater)

with thereceivingterminal.

b) Response Frames

Response frames are transmitted only during the fixed delay to acknowledge

the reception of a frame. A response frame may contain status information if it is

used to acknowledge a request status frame.

c_ Message and Data Frames

There are two types of message and data frames: (1) message proper frames

which contain up to 64 bytes of data, and (2) associated data frames which may con-

tain up to 2 kilobytes of data.

The transmission of data from one terminal to another requires the exchange of

several frames known as a frame sequence. Terminals do not control the bus for the

entire duration of the frame sequence but rather relinquish control at various times as

shown in Figures 3.16 and 3.17. There are two types of frame sequences: (1)

message only sequences, in which only the data contained in a single message proper

is exchanged, and (2)message with data sequences in which associated data frames

follow a message proper.
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Terminal A
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End Message Proper
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FIGURE 3.16 Timing for Transfer of Message-Only

Sequence from Terminal A to Terminal B
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FIGURE 3.17 Timing for Transfer of Message-With-
Data Sequence from Terminal A to
Terminal B
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In order for two terminals to exchange a message with data sequence, they

must establish a virtual circuit. The sending terminal, from which the data originates,

reserves itself to communicate only with the receiving terminal, to which the data is

destined. It then sends a request virtual circuit frame to the receiving terminal. If

that terminal is capable of receiving a data sequence, it will reserve itself to communi-

cate only with the sending terminal. When the two terminals are reserved to commu-

nicate only with each other, they are in a virtual circuit connection.

If the receiving terminal is unable to make a virtual circuit connection, the sen-

cling terminal will wait for a delay period which can be expressed by the equation

Retry Delay (k) = 2 (k-l) modulo 7 x I gsecond, k=l,2 ..... RC

where k is the number of the attempt and RC is a terminal parameter known as the

Retry Count. Thus, after failing to establish the virtual circuit connection once, the

sending terminal must walt l gsecond before sending another RVC frame. If that

attempt fails, it must then wait 2 }_seconds, and then 4, and so on up to 128 _.sec-

onds, after which the cycle repeats itself until the number of attempts to establish a

virtual circuit has exceeded the retry count. If this happens, the sending terminal will

no longer be reserved for communication only with the receiving terminal. It is impor-

tam to note that the retry delays are f'med times that double with each retry and not

random time periods chosen from an interval that doubles in size for each retry as in

the Binary Exponential Backoff algorithm used in Ethernet.

3.5 L-Exvressnet

L-Expressnet was developed for a bus network known as Campus Net (C-

NET) by the Consiglio Nazionale delle Ricerche of Italy[BORG85]. It is similar to

the Expressnet protocol developed at Stanford and even more similar to the BID pro-

tocol for bidirectional buses.
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In L-Expressnet,the token is passedvirtually rather than through the recep-

tion of an actual messageor control signal. Each terminal is equippedwith several

timers (whosefunctions will be explained later) that indicate when a terminal is in

possessionof the token. In order for the L-Expressnetprotocol to work properly, all

terminalson the bus must have a unique index that reflects the terminal's spatial

position on the bus. For example, the terminalsmay be indexed from left to right,

eachterminalhavinga higherindexthantheoneon its left.

At the beginningof a cycle, or "train" in L-Expressnetterminology, all of the

timers on the enabledterminals on the bus are reset and begin counting upon the

detectionof a signalknown asthe "locomotive." The locomotive neednot bea string

of onesand/orzeroes. It may be simply a burstof the carrier signal or the first 0 to 1

transitionaftertheendof theprevioustrain. Sampletrainsareshownin Figure3.18.

A terminal of index i knows it is in possessionof the token when a counter,

CR1,reachesthevalue:

CRI(i) = (i - 1)x A

where A is a lengthof time greaterthan the reactiontime, i.e. the time it takesfor a

terminal to detectandact upon a carrier transitionon the bus. After a terminal's CR1

counterhas reachedthe value describedabovethere is a time period of length A in

which it may transmita packet. The transmissionis guaranteednot to experiencea

collision. Although a terminal may or may not havedatapacketsto transmitwhen it

is in possessionof the token, therewill be a time of lengthA before anotherterminal

may transmit. If a terminal doestransmitwhenin possessionof the token, theend of

its transmissionmarkstheendof thetrain.

After a train has traversedthe bus, a new locomotive must be generatedby

the lowest indexedenabled terminal on the network. To know whether or not it

should generate a new locomotive, each terminal is equipped with another counter,

53



Time

Locomotive I
-_---- A ---_

Terminal 1

May Transmit
_aTerminal 2

y Transmit [''" [

1:12

Terminal M

May Transmit

A = Time in which Terminal May Transmit Guaranteed of
No Collision

1;12 = Propagation Delay from Terminal 1 to Terminal 2

ContentionPeriod

Locomotive [ [ Terminal 1 [

I [May Transmit] Locomotive [ ....

Terminal 2
Transmission

End of J
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New
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FIGURE 3.18 Sample L-Expressnet Trains

CR2, that also begins counting upon the detection of the locomotive. A terminal may

generate a locomotive if its CR2 reaches a value that reflects the amount of time

required for a train to traverse the network (M * A, where M represents the number

of terminals on the bus), plus the amount of time it would have taken for a train gener-

ated by a terminal of lower index to reach it. That is, a terminal of index i may gener-

ate a locomotive if :

CR2(i) =M* A+2 * Z+2* (i-l)* 0
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where"¢is the time it takes for a signal to traverse the length of the bus and 0 is a

time such that

0 > max ['l;ij / (i-j)[

where "l;ij represents the propagation time from terminal i to terminal j.

When the network first begins operation, the CR1 and CR2 counters are at

zero and will remain so until the terminal detects a locomotive as described above.

However, unless the network is somehow initialized, no locomotive will ever be gen-

erated. Therefore, each terminal is equipped with a third counter, CR3, that begins

counting when the terminal is first powered up but reset by the detection of the loco-

motive. When a terminal's CR3 counter reaches a value given by

CR3 =M* A+4 * "C+2 * (M-l) * 0

it knows that the network is not initialized and may generate a locomotive. The first

locomotive is known as the "pilot."

3.6 PERFORMANCE ANALYSIS OF THE ETHERNET_ HYPERchannel AND

ProNET-10 PROTOCOLS.

In order to determine the applicability of a given protocol to a system, the pro-

tocol's performance must be studied. One of the most important performance factors

is average delay. In the following sections, offered load versus delay is plotted for

several protocols. The data points for these plots were obtained through computer

simulation of the protocols and from various studies of protocol perfor-

mance[HEAT86/FRA N84/LIU82/OKAD84].

The performance of CSMA/CD and token ring protocols has been compared

often in the literature[LIU82/OKAD84]. The basic results are that for lightly loaded
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systemsthe performanceof CSMA/CD is better than token ring in terms of average

delay. This is becausea stationmay accessthe channel any time it is free in the

CSMA/CD system but must wait while the token is passedthrough stationsthat are

not readyto transmit in the tokenpassingring system. As the systembecomesmore

heavily loaded,collisions occurmoreoften in the CSMA/CD systemandtime is spent

in the backoff period. For heavily loadedsystemsthe token passingprotocol is rec-

ommendedbecausethe tokenpassingoverheadis relatively small if a majority of the

stationshavetraffic.

Another aspectof performanceis a guaranteeof datadelivery. A guaranteeof

delivery,can be made in a CSMA/CD systemwith acknowledgment,but the acknowl-

edgmentpacketalso requireschannelresources. In the token passingsystem,a flag

is usually located in the packet that the receiving station uses to inform the sending

station that the packet was receivedwith no detectederrors. Another advantageof

the token ring system is guaranteedaccessbecausea CSMA/CD system cannot

guaranteeaccess. This makes the token systemmore applicable to real time sys-

temsthatrequireguaranteedaccessanddelivery.

The HYPERchannelprotocol is advantageousfor some applicationsbecause

of its prioritized accessscheme. The serviceof low priority stationssuffersfor the

improvementin high priority service.

MIL-STD-1553B is useful in systemswith one central controller and tight

requirementson accessand delivery. It is not well suited to systemsthat havemore

thanone sourcethat generatestraffic in a Poissonmanner. This is a seriousproblem

in avionics systems where smart distributed systemsare becoming prevalent. The

useof a command/responsesystemdefeatsone of the advantagesof distributedintel-
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ligencein thatthe systemmust wait for the main controller to allow an intelligent sub-

systemaccessto the buswhich could not occuruntil the next time the controllerwas

scheduledto correspondwith that station. The subsystemcannot ask for additional

sensorinformationor main memory accessuntil the main controller allows it access

to thebus.

3,6.1 PERFORMANCE ANALYSIS OF ETHERNET

The delay vs. offered load and packets lost vs. offered load plots shown in Fig-

ures 3.19 and 3.20 were taken from the paper "A Simplified Discrete Event Simulation

Model for an IEEE 802.3 Local Area Network" by Sharon K. Heatley of the National

Bureau of Standards[HEAT86]. These are the results of a computer simulation of the

IEEE 802.3 protocol standard which has the same timing features as Ethernet. A

typical simulation timeline is shown in Figure 3.21. The protocol was modeled using

the following rules:

1. The arrival of packets at each terminal is a Poisson distributed random pro-

cess.

2. The propagation delay between any two stations is constant. This would

be the case for an Ethemet network on which the terminals are equally

spaced along the propagation medium.

3. After a collision, all terminals involved go into a back-off period, the length

of which is determined by the binary exponential backoff algorithm.

and the following parameters:

1. Slot time--51.2 I.tseconds

2. Interframe gap (13=9.6 _tseconds

3. Jam size (J)=3.2 l.tseconds

4. Maximum propagation delay=25.6 _seconds
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5. 20% of packets are 1024 bytes in length and 80% of packets are 64 bytes

in length.

3.6.2 PERFORMANCE ANALYSIS OF HYPERchannel

This section gives the results of a HYPERchannel simulation presented in the

paper "Measurement and Analysis of HYPERchannel Networks" by William R. Fran-

ta and John R. Heath. A detailed description of the HYPERchannel protocol can be

found in section 3.4.

The HYPERchannel network simulated was composed of six terminals con-

nected to a 1000 foot bus. Three of the terminals were designated "senders" and

served only as data sources. The remaining three terminals were designated

"receivers" and served only to colllect data. The "data" was generated by a thirty-

two bit random number generator. Each node was provided with a separate "seed"

for the random number generator in order to avoid the repeated transmission of identi-

cal frames.

Several simulations of over 110,000 flame sequence transfers yielded results
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within 2% of eachother. Figures3.22and 3.23showthe averagedelay normalizedto

"transmissionperiod units" plotted against the percentageof 50 Mbits/secondof the

offered load. Figures3.24 and 3.25showthe throughput,i.e., the trunk utilization ver-

sustheofferedload.

It was also observedthat the effect of the wait flip-flop was not what the

designersof HYPERchannelexpected. Insteadof preventing the higher priorities

from "hogging" the channel, it has reversed the priorities with every frame

sequence[FRAN84].

3.6.3 COMPARATIVE RESULTS FROM ANALYTIC AND SIMULATION

STUDIES OF CSMA/CD AND RING PROTOCOLS

1- Comparison between the delay characteristics of the token

CSMA/CD protocols [LIU82]

1- Conditions under which the comparison was conducted:

- Normalized transmission media = 0.005

- Token ring packets are removed by the source.

2- Results are shown in Figure 3.26.

3- The following can be concluded from the results:

- At light loads, the token ring suffers greater delay than CSMA/CD.

- At heavy loads the token ring protocol suffers less delay than CSMA/CD.

- At heavy loads the token ring's delay appears to be stable.

ring and

2- Comparison between the delay characteristics

CSMA/CD protocols [OKAD84]

1- Conditions under which the comparison was made:

- Channel Capacity = 5 Mbps.,

- Number of nodes used = 50.

of the token ring and
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- Maximum distance covered = 1.0 Kin.

- Packet length = 1000 bits.

- Repeat delay at each node = 8 bits.

I I !
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Average Response Time Comparison

- Token header length = 24 bits.

Maximum length of contention to control = 7.

back-off)

2- Results are shown in Figure 3.27.

3- The following can be concluded from the results:

( CSMA/CD binary exponential

At light throughput values, CSMA/ CD protocol experiences less delay than the

token ring protocol.

At heavy throughput values, the token ring protocol experiences less delay than

the CSMA/CD protocol.
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4 MODIFIED FREE ACCESS PROTOCOL

4.1 THE COMMUNICATIONS SYSTEM OF INTEREST

The communications systems of special interest to this study are those that

have a majority of Poisson distributed traffic with some time critical or scheduled peri-

odic traffic as may be found in data collection systems and other real time

applications. These systems are not well served by CSMA/CD/BUS, TOKEN/RING,

or COMMAND/RESPONSE/BUS protocols. CSMA/CD protocols are unable to guar-

antee data latency because any packet may suffer multiple collisions even on a lighdy

loaded system. The token ring protocols guarantee data latency at the cost of poor

performance for light Poisson loads. The command/response protocols provide good

performance for the scheduled loads but are not well suited for Poisson traffic. The

communication needs of systems that have a majority of Poisson distributed commu-

nications with some time critical or scheduled periodic traffic could be served by a

communications protocol that provided a period of either scheduled or com-

mand/response access followed by a period of free access.

4.2 MODIFIED FREE ACCESS PROTOCOL

The MFA protocol resides in level one, the physical layer, of the seven layer

model. The modified free access (MFA) protocol is a modified implementation of the

Ethernet level 1 protocol. It is designed to serve systems with both scheduled and

Poisson traffic. For the MFA protocol, time is divided into communications cycles.

The cycle time is variable and should be set so that the access requirements of the

scheduled traffic may be satisfied. Each cycle is divided into two sections. In the first

section, stations have exclusive access to the bus and this is followed by a section of

68



Ethernet access. A time line for MFA is shown in Figure 4.1. Each station's access

may be described by the algorithm illustrated in the flowchart shown in Figure 4.2.

The advantage of this protocol over the Ethemet and HYPERchannel proto-

cols is that stations with real time or time critical packets can be assigned slots in the

reserved access period. This guarantees access time for these stations. This feature

makes this protocol attractive for systems with even very small amounts of high prior-

ity scheduled traffic. The MFA protocol also has an advantage over token ring

protocols in that stations may be given a guaranteed access time while the network's

performance for light Poisson traffic is comparable to CSMA/CD. This performance

figure assumes that the reserved access slots are utilized by the scheduled traffic

100% of the time. The MFA protocol degenerates to the Ethernet protocol in sys-

tems were there is no scheduled traffic.

For ease of implementation the protocol was designed so that standard Ether-

net terminals may be used for channel access. This is valuable for hardware

availability and economic reasons. This restriction should not limit the protocol's

applications but is an advantage because the protocol may be used in cost sensitive

applications.

4.3 IMPLEMENTATION

There are several methods by which modifications of the standard Ethemet

terminal required to implement the MFA protocol may be accomplished. The two

modifications that are most obvious to implement are hardware modifications to the

Ethernet terminal hardware or modifications to the host's network interface soft-

ware. The hardware modification is preferable because it leaves the cpu cycles that

are required for the execution of additional software free for the execution of the sta-
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FIGURE 4.1 MFA Cycle Definition
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FIGURE 4.2 Transmission Flowchart for MFA Stations
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tion's application software. The hardwaremodification is also preferablein that a

systemwith diverse processorsand standardcommunications interfaces could easily

be implemented. The use of a software solution in the diverse processor system

would require a version of the network software to be written for each of the different

machines. The programming time and debug time for these modifications would make

implementation of the system unattractive.

The use of external hardware for modification of the carrier sense line to con-

trol Ethernet access has been shown effective in the L-Expressnet project

[BORG85]. The major difference between MFA and L-Expressnet is in the modifica-

tion of the Ethernet standard. In the L-Expressnet project the protocol implemented

by the Ethernet protocol integrated circuits was in essence a virtual token passing

bus. The first access method of the MFA protocol may be viewed as a virtual token

passing protocol similar to the L-Expressnet and HYPERchannel.

A simple hardware approach is to utilize the clear to send (CTS) signal provid-

ed on typical Ethernet interface integrated circuits. The CTS line could be driven by

either a set of timers as shown in Figure 4.3 or a small dedicated microprocessor sys-

tem as shown in Figure 4.4. Both of these methods accomplish the same task with

the timer addition being the simplest and the microprocessor addition being the most

versatile. The microprocessor system has an advantage in that the microprocessor

could be used to recognize the sync pattern and other system timing messages. This

service must be provided to the timer controlled system by the host computer or addi-

tional hardware.

The timer modification could be easily accomplished in two ways. The first

way would require the use of three timers and a system sync signal which would be
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required at the start of each cycle to reset all the timers as shown in Figure 4.5.

Another method would be to use four timers with timer Td set at the cycle rate as

shownin Figure 4.6. Td would be used to reset all timers at the end of eachcycle.

The secondmethod has the advantageof taking lessof the availablebandwidth for

sync purposesat the cost of requiring more stringent requirementson the clocks.

This is somewhatmitigatedby the Ethernetprotocols useof carrier sensewhich will

allow leewayin timeraccuracy.

Another methodthat would possibly reducethe integratedcircuit count of the

modification would be to provide a method to load the timer values shown in Fig-

ure4.7 into one timer. The outputsof the timers would be combinedthroughhigh

speeddigital logic to drive theclear to sendor carrier senseinputs of Ethernettermi-

nal integratedcircuits. The use of the clear to send line allows the collision detect

and receivecircuitry to operatewithout interferencewhile the transmit sectionis only

enabledwhen the timers indicatea reservedperiod for the station or the free access

periodat theendof eachcycle.

The timers will be driven by the ten megahertzclock provided by all Ethernet

stations. This will give one hundred nanosecondresolution to the timing periods

which will usuallynot beneeded.The ten megahertzclock should first berun through

a divide by ten counterto provide 1 microsecondresolutionor a divide by 100counter

to provide 10 microsecondresolution. This reducesthe values that the protocol

timers must count and is more than adequateresolution since there is a minimum of

9.6 microsecondsquiet periodat the end of eachtransmissionand the minimum pack-

et transmissiontime is 57.6 microseconds. Another factor allowing low resolution

timers is carrier senseaccessrequirementsof Ethernet.This allows the next station
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FIGURE 4.7 Alternate Timer Values

to transmit to become ready anytime after the current tranmitter's signal reaches this

station. The timers and logic can be built with standard integrated circuits.

The microprocessor driven version of this protocol has the microprocessor

serving in place of the timer section as described above. This would be useful if a sta-

tion is to have several reserved slots in each reserved access period. However, most

applications will allow the station to send consecutive packets in a single reserved

slot as shown in Figure 4.8.

A mixture of these timer and microprocessor driven implementations could be

The timer driven

grouped while the

used for terminals that required several

4.3.1 IMPLEMENTATION DETAILS

A circuit diagram of a typical Ethernet terminal implementation is shown in

Figure 4.9. The CTS line is used to enable the transmitter section of the terminal.

The unit will behave as a standard Ethemet terminal for receiving and collision detec-
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tion. The modifications will, however,affect the transmitter flow chart as shown in

Figure 4.10 and, therefore,their effectsmust be understoodso that appropriateaction

maybetaken.

The terminal will behaveas any Ethernet terminal if the CTS line is held

high(enabled). The terminal is only affectedby the CTS line if it is transmitting. If a

stationhas a packet to transmit, it will defer the transmissionuntil all Ethernettrans-

mission requirementsare met and the CTS line is true. If the station is transmitting

and the CTS line goeslow, then the station will ceasetransmission. This event will

be recorded in the transmitter status field of the transmit command block. This event

will also change the state of the command unit from active to suspended. This will

result in the terminal updating the system control block status word. The status word

is modified to indicate that the command unit is inactive and to indicate that the com-

mand unit left the active state. This will also cause the INT interrupt request line to

go high, indicating a request for service from the host. The host must then read the

system control block and determine that the command unit has gone inactive, it must

then determine if the transmission was completed. If the transmission was not com-

pleted, then the host must determine why the unit failed to complete the

transmission. This can be caused by exceeding the number of retries or the loss of

CTS before the completion of any transmission attempt. In the case of the loss of

CTS, the packet should be immediately rescheduled so that its transmission may

begin at the end of the reserved access period.

Initialization and power failure recovery would be accomplished by all stations

assuming sync has just occurred. This will allow only a few stations access to the
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bus and they should not have traffic ready to be sent. This will allow the sync gener-

ating station to take control of the bus quickly after power failure or initialization.

The failure of a timer or the microprocessor could disable a station's ability to

transmit or allow it to transmit in a reserved space. However, there is no provision

for fault tolerance in either system. If this feature is necessary, it can be added by the

addition of either redundant timer hardware or the addition of a second terminal that

will replace the primary terminal if it fails.

4.4 EXPANSIONS AND MODIFICATIONS

Selectable timer values could be used to increase the versatility of the system

for a given application. This would allow the system to be reconfigured dynamically to

suit known communications traffic pattern changes. An example application would be

the change in the communications requirements of a multi-stage launch vehicle after

the dropping of a spent stage.

The loading of timer values could be accomplished by several methods. A set

of timer values may be stored in ROM and loaded into the timers by the local host at

the reception of a particular Ethernet packet. The timer values could also be placed in

a broadcast Ethernet packet. The use of a minimum length packet for the sync com-

mand would allow for 46 data bytes to be used for command purposes. The use of

these bytes to dynamically change various stations timers would allow the system to

be very flexible. The sync packet size could be extended to allow more timer values

to be set but this is a trade-off with the available bandwidth.

The use of sixteen bit timers requires that two data bytes be sent for each

timer count modification. Since the Tc and Td timers must be the same for all sta-

tions, only the Ta and Tb timers are unique to each station. Therefore, four bytes are
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required for each station. The stations could be assigned four byte slots in the sync

packet as shown in Figures 4.11 if the timer values are to be reset at each sync. If

only a few stations' timers will be changed, the station addresses for the stations to

be modified could be imbedded in the packet as shown in Figure 4.12. Another alter-

native is to send a mimimum length packet that contains a reference to previously

stored timer values as shown in Figure 4.13. Again this is a trade-off between flexi-

bility and bandwidth. The imbedding of addresses would be best if only a small

percentage of the total stations are to be changed. The assigned slot method would

be best if the access rights of a majority of the stations are to be changed at each

sync. This method would be difficult to implement for a large system, however, due to

the large number of data words required to change all system timer values.

The use of a microprocessor to control a terminal's timers or to serve as the

timer system would allow the terminal to be very versatile with the use of many pat-

tern changes controlled by these processors. The processor could use the 46 bytes of

data contained in the minimum Ethernet packet to indicate which set of timer values

should be used. These values might have been stored in ROM prior to system pow-

er-up or could have been loaded into RAM from previous command packets.

The use of dynamic reassignment changes the MFA protocol from a TDMA

(virtual token)/free access system to a command/response/free access system. The

sync generating station serves as the bus controller and should be the communica-

tions terminal of the central controller. This station might use two transmit and

receive addresses. The broadcast address could be used for receiving as in all Ether-

net stations and also for transmitting the sync signal. The broadcast transmit

address would be used as a flag by the other terminals to indicate that this packet
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was the sync packet. The unique address would be used for normal communications.

The unique address would be used by other stations to address the central controller

without using broadcast messages.

Another useful feature that would be easy to implement is to allow the station

that just received a packet to transmit an acknowledgment during the transmitters

reserved time. This may be required in some systems but has been shown to drasti-

cally reduce throughput in long systems.

4.4.1 ADDITIONAL STATION TYPES

Limited: Stations that will only have Poisson distributed traffic and will not

require assigned reserved slots may be implemented with only the Tc timer if sync is

used with each cycle or the Tc and Td timers if sync is sent only after each group of n

cycles. These stations will have no reserved access and will not interfere with the

reserved access period. This type of station could be used for a computer system that

does not serve as a controller or for other stations that have no time critical access

requirements.

Pure: Pure Ethernet stations could be added for short term use as long as

their possible contention with reserved stations could be tolerated. These stations

should be limited in number and should be used only for initial installation and traffic

analysis. These stations can then be replaced with MFA or limited stations after the

station's traffic generation pattern is known. The addition of reserved slots for new

stations will require the modification of at least the Tc timer in each station. This

could be accomplished by network messages if the timers are programmable but will

require hardware changes to the timers if they are not programmable.
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Persistent: A single persistent CSMA station could be added if there was a

need for this type station. Possible applications for this station would be a flight con-

troller, system time clock, or the primary MFA station responsible for sync

generation.

4.4.2 PROTOCOL MODIFICATIONS

In systems where the Poisson load is known to be high or is known to often

interfere with the sync signal, the Td timer could be used to clear the bus so that the

sync station would have sole access at the end of each cycle. A timing diagram for

this system is shown in Figure 4.14. This implementation throws away bandwidth to

assure that the sync signal does not suffer a collision. In most systems a small

amount of variance may be allowed in the starting time of each cycle but for heavily

loaded or extremely time critical systems this may not be tolerable.

Another possible modification to improve the performance of high priority sta-

tions is the use of linear or exponential priority parameters in the backoff algorithm

delay calculation. This would improve the chances of a high priority station getting

the bus at the expense of the low priority station having longer average delays. The

basic scheme in this system is for the high priority stations to use the exponential

backoff algorithm time and lower priority stations to use this algorithm with additional

time added. This does reduce the average delay of the high priority stations but may

dramatically increase the average delay of the low priority stations.

In order to avoid the possibility of reserved time stations being in backoff dur-

ing the station's reserved access time, only the critical packets should be sent by the

reserved time station. A second terminal could be added to handle Poisson traffic

from this source. This would not be necessary in a system whose protocol chip
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allowed the exponential backoff timer to be overridden by a clear to send reserved time

(CTSRT) signal. It is preferable to place stations with long scheduled packets at the

beginning of the reserved time. This should allow stations with small packets to finish

their backoff routine before their reserved period. Another reason for placing the long

scheduled packets fLrSt is that if these stations miss their reserved access times it would

be preferable for these stations to be the ones to use the free access period. This will

improve performance since one long packet suffers fewer collisions than many small pack-

ets as seen from the Ethernet simulation in Chapter 6. The long packet will complete its

transmission after it gains control of the channel; while if many small packets must be

transferred, they will each have to gain control of the channel.

4.5 COMMAND/RESPONSE MODIFIED FREE ACCESS PROTOCOL

A command/response system could also be implemented by this method. An Ether-

net station serving as the bus controller could control all of the clear to send lines through

the station's host software or additional hardware and, therefore, would be the bus mas-

ter. The overhead would be high but the high throughput of the Ethernet system and low
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terminal cost could make this systemeconomical for someapplications. The com-

mand station would probably use a minimum length packet which has 46 bytes of

data. The data field would be wasted if only short commandsof one or two bytes

were sent to only one station. If the commandswere broadcastso that all stations

could listen and commandsfor many stations were embeddedin the data field, this

would significantlyreducetheoverheadfor thesystem.

4.6 SOFTWARE FOR TIMING ANALYSIS

The use of a timing analysis software package could be very beneficial in

assigning reserved access times. Care must be taken that no stations overlap and

that there is a minimum of dead time in the reserved access period. There must, how-

ever, be some time between individual reserved access periods to allow for

propagation delays. A simple program with graphically oriented output would be use-

ful in assigning reserved and free access periods. If all reserved slots were required

to be of the same length a reservation table could easily be used to indicate assign-

ments.

4.7 EXAMPLE APPLICATION: LAUNCH VEHICLE AVIONICS COMMUNI-

CATIONS

The communication needs of a launch vehicle with intelligent sensors and dis-

tributed intelligence can be described as Poisson traffic with some scheduled traffic.

A typical example for a one stage launch vehicle is presented in Table 4.1. The sen-

sors are broken into two classes intelligent and dumb. The intelligent sensors are

read periodically by stations needing to know their values but they also act as watch-

dogs and may generate traffic in situations where critical values are being approached
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or for other reasons. The dumb sensors only provide data when requested to by

another station in the system.

For this system, using Ethernet, the average delay is the time to transmit two

average sized packets[GONS87]. The use of scheduling reduces the average delay

for this system from twice the average packet length to near zero. This does not

account for the waiting time a Poisson station would experience waiting for the

restricted period to pass if it generated a packet during this time. It should be noted

in this example that there are 60 periods of 5.76 milliseconds in each second when the

channel is reserved.

TABLE 4.1 Data Sources for Launch Vehicle

STATION TYPE TRANSMISSIONS/SEC SIZE

1 FLIGHT CONTROLLER

1 NAVIGATION UNIT

1 ENGINE CONTROLLER

100 SENSORS (SCHEDULED)

40 SENSORS (POISSON)

100

60

60

60/SENSOR

5/SENSOR

150 BYTES

150 BYTES

100 BYTES

80 BYTES

100 BYTES

TOTAL LOAD = 530 x 103 BYTES / SECOND

-- 4.24 x 106 BITS / SECOND

NOTE: OVER NINTY PERCENT OF THE OFFERED

LOAD IS SCHEDULED AND THE AVERAGE

DELAY OF THE SYSTEM USING STANDARD

ETHERNET WITH A FOURTY PERCENT

OFFERED LOAD IS TWO AVERAGE PACKET

TRANSMISSION TIMES. THIS SYSTEM

WITH SCHEDULING WILL HAVE LESS THAN

ONE AVERAGE PACKET TRANSMISSION

TIME FOR THE AVERAGE PACKET DELAY.
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5 MATHEMATICAL ANALYSIS OF PROTOCOL

In this section, a mathematical model is developed to show the improvements

that the Modified Free Access (MFA) protocol has for a local area network with sched-

uled loads. We will use established mathematical models of CSMA and CSMA/CD

protocols from Tobagi's work as the basis of a model for MFA.[TOBA87]

_;.1 ETHERNET MODEL

The Ethernet model is based on the models described in the paper, "Perform-

ance Analysis of Carrier Sense Multiple Access with Collision Detection" by Fouad

A. Tobagi and V. Bruce Hunt. [TOBA87] The analysis considers such factors as capac-

ity and the throughput-delay performance of a local area network (LAN) employing

Carrier Sense Multiple Access with Collision Detection (CSMA/CD). It can be used

to determine the performance of a network as a function of average retransmission

delay and collision recovery time. A source for comparison for the results of Tobagi's

model is the data given in "Measured Performance of the Ethernet" by Timothy A.

Gonsalves. [GONS87] Gonsalves' paper discusses the difficulty in mathematically

modeling a LAN using the Ethernet protocol due to the binary exponential backoff

algorithm and the physical distribution of the stations in the LAN being modeled. The

measurements taken by Gonsalves were of LANs operating at 3 and 10 Mbit/sec. It

is shown that the Ethernet protocol achieves high throughput when the packets are

long. The correlation between the measurement of the actual LAN and the predic-

tions based on analytical models ranged from good, to poor, depending on the com-

plexity of the model.
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5.2 NOTES ON MODELING CSMA/CD PROTOCOLS

(1) In a non-persistent CSMA/CD protocol, a station with a packet ready for

transmission senses the communication channel and proceeds as follows:

(i) If the channel is idle, then the station initiates transmission of the

packet.

(ii) If the channel is busy, then the station schedules the transmission

at some later time, and tries again.

(iii) If a collision is detected during transmission, the transmission is

aborted and transmission of the packet is scheduled for some later time.

(2) In a P-persistent protocol, P is the probability that a station will transmit

when it senses the channel is open. If P = 1, then if a station finds the channel busy

it will transmit as soon as the channel becomes free, similar to non-persistent CSMAJ

CD. IfP#l, then when a station senses the channel is idle, there is only a P probability

that it will transmit and a 1-P probability that it will delay 1-seconds (where 1"is the

end-to-end propagation delay) before taking any further action. After the delay of

1-seconds, the station will again either transmit with probability P, or wait another T

seconds with probability l-P, and so on until it either transmits or senses that the chan-

nel is busy in which case the station schedules transmission of the packet at some later

time.

If each of the rescheduling delays of the P-persistent and the non-persistent

protocols are set to integer multiples of'r seconds, and if the delays were geometrically

distributed with parameter P (i.e., n'rffi P(1-P) n- 1 n>l), then P-persistent and non-

persistent protocols are identical.
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(3) Given that a transmission is initiated on an EMPTY channel, it will take

at most one end-to--end propagation delay, "r, for the first packet to reach all stations

on the channel. After that, the channel is sensed busy for as long as data is transmitted.

(4) Some station will possibly sense the channel is idle when in fact another

station has begun transmission. Due to propagation delay the signal will not reach the

previously idle station before it begins transmission. When this happens, the station

will begin transmitting and its signal will interfere (collide) with the signal already on

the channel. In this case, it will take (at most) 1"seconds before interference reaches

all devices.

(5) _ is the time that it takes a station to detect interference once the collision

front reaches the station's connection to the bus. _ depends on the implementation

of the system. _ is approximately one bit transmission time for most implementations.

(6) For the first packet to reach all stations, at most 1"seconds is needed. For

a station to detect interference, at most r+_ seconds are needed. And, if g seconds are

needed for collision consensus, then at most c_ seconds are needed until the channel

is sensed idle by all stations. This means that, given a collision occurs, then the time

required for all devices to cease transmission, _,, is 2"r+_+_, and at most it will take

ot=3-r+_+g seconds until the channel is again sensed idle by all stations.

(7) Simplifying Assumptions:

(a) The time a_s is divided into "slots" I- seconds long.

(b) Transmission may only begin at the beginning of a slot.
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(c) All stationson the channel are time synchronized.

(d) Whenanystationbecomesready in someslot, it sensesthechannel

during that slotandthenoperatesaccording to the CSMA/CD protocol.

5.3 CSMA/CD CHANNEL CAPACITY

The model is considered as an infinite population model. The sequence of

transmission periods are the considered sequences of events and such events include

successful transmission, unsuccessful transmission, and idle periods. All stations are

also considered collectively from an independent Poisson source and "r is arbitrarily

large. The following are some properties of the model:

(a) A transmission period followed by an idle period is called a "cycle."

(b) Since an infinite population model is assumed, then all cycles are statistical-

ly identical.

(c) Since a Poisson source is assumed, the probability that the number of trans-

missions, X is equal to k is given as: P{X=k} = e-ggk where g is the rate at
k.t

which stations become ready during a slot in stations/slot-time.

(d) The length of a packet, i.e., the number of slots required for its transmis-

sion, is denoted by T. A successful transmission period is. therefore, of length

T+ 1 slots. In the case of a collision, the length of a transmission period is_/+ 1.

(e) The probability, of zero new transmissions is e -g .

(f) The probability of one new transmission is ge -g .
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(g)The probability of at least one new transmission is one minus the probability

of zero new transmissions, or 1-e-g.

(h) The conditional probability of _ one new transmission given the oc-

currence of one or more new transmissions is Ps = ge-g
1 -e-g

(i) The average transmission period is:

7_= (T + 1),o, + (_,+ 1)(:- es)

= Tl:'s+ es + r,(1-,°s) + (1-Ps)

= TPs+y(1-Ps)+ 1

=r :_e_,}+r : f--7-' +:

Tge-g _ge-g
+_ +1

1 - e -s 1 - e-_

Tge -e, - _ge -_ + _1 - e -s ) + 1 - e-g

I - e -g

(j) The idle period may be described by a geometric distribution, The geomet-

ric distribution is described by a single parameter, the probability of success.

p. For this case, success is when one or more stations generates new traffic and

failure is when no stations have new traffic. P is given by the probability of a

new transmission which is one minus the probability of zero new transmissions,

or 1-e-g. The geometric distribution with probability of success p has a mean

value of 1/p.

1

1 -e -g

Therefore, the average idle period is defined by the equation
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5.4 1-PERSISTENT CSMA/CD THROUGHPUT EXPRESSION:

The following quantities can be calculated given that the probability of genera-

tion g is known:

B = Average duration of a busy period

I = Average duration of an idle period

U" = Average time during a cycle that the channel is carrying successful transmissions

(such periods will be called "successful" periods).

The throughput, S, can be expressed as a function of B, I, and U, specifically

s = U _. If we let y= 2-r, (that is, _+_=0) then --y = 2 , and it follows that:
B+ 1 .1"

S

Tge-g

Tge-S + 2 - 2e-* - 2ge-g + 2 - e-g

T-tg-legTge--g

T-lg-legTge -g + 2T-Igqe g- 2T-lg-lege -_- 2T-lg-legge -g + 2tg- T-tg-lege-g

1 + 2T-lgqe g- 2T-tg -t-

1

2T -t + 2T-lgqe g- T-lg-1

1 + 4T-lgqeg - 3T-lg q - 2T "x

1 propagation delay
Now, if we define a -- -- = , then:

T packet transmission time

S

1 + H(g)a
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4eg- 3
where H(g)= 2. (Note:

g
if T < 2, then the system will need 3'<2 for all de-

vices to stop transmitting. If T < 2, then an undetected collision may occur since the

transmitting station may complete its transmission before detecting the collision. This

situation arises when a station at one extreme of the bus begins transmitting and just

before this transmission reaches the other end of the bus, a station at that end begins

transmitting, thus yielding a collision. In the time it takes the collision-garbled data

to reach the first station at the extreme of the bus, that station may have completed

its transmission and therefore not recognize the collision with its packet. This packet

will be lost unless a higher level protocol is in use to verify the reception of the packet.

Now, if we let H= ming{H(g)}, then C(oc a) = 1+Ha
when a <__0.5 and

T >__2. However, if T < 2, and a > 0.5 then the case will be:

Ps = -sooe (as before)
1 -e -g

1
"i"= _ (as before)

1 -e -g

T-'-P= ['sT + (1-Ps)y + 1 = 3

since T will never be less than _/, and 3' = 2, and therefore Tmin = 2. From this we know

that:
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S= PsT
7P+ i

Tge-S

1 - e-s

Tge-g

3(1 - e-S) + 1

Tge-g

2ge-g + 2(1 - e-g-ge-g) + 2 - e -g

1

2ge-gT-lgqeg + 2(1-e-g-ge-*)T-tgqeS + 2Ttg-leS-e-ST-lg-leS

1

2T -t + 2(T--tg-le g - T-tg-I_ T-l) + 2T-lg-le g- T-tg-I

1

4at a 3a
2a+ 2a

g g

1

a(2 + H(g))

1

a(2 + H)

where H = ming{H(g)}, as before.

If we define qi(x) as the probability that there are i arrivals in x slots, then

q,{x) = e -_ (gx)i
i!

Thus, the probability of exactly one arrival in x number of slots is

ql(x) -" e -Sx (gx)l = gxe -sx

and the probability of exactly zero arrivals in x number of slots is

qo(x) = e -sx = e -_x
O_
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Given that a transmissionof x slots in length is occurring, we know that the

probability of one or more newarrivals during the x slots is 1-q0(x)= 1-e -gx. Thus the

probability of a successful transmission after a transmission of x slots is simply the

probability of exactly one arrival given that there were one or more arrivals during

the x slots, or

P,(x) =
ql(x) gxe "gx

1 - qo(x) 1 - e -gx

which agrees with the result derived earlier. The probability of unsuccessful transmis-

sions is the probability of two or more arrivals, or

Pu(x) = 1 - Ps(x) = 1 ql(x) - 1 gxe-gX

1 -qo(x) 1 -e -gx

The probable length of the busy period. B(x), can be found by

B(x) = Ps, termt + Pu,term2

where term1 is the probable length of the busy period in the case of a successful trans-

mission, and term2 is the probable length of the busy period in the case of an unsucces-

sful transmission.

First. we will attempt to compute terml, the probable length of the busy period

in the case of a successful transmission. In order to have a successful transmission.

we must have x= T+ 1, and. thus. in the case of successful transmission:

T + 1 = length of a successful transmission busy period.

1-q0(T+ 1)= probability of one or more arrivals in the T+ 1 period,

B(T+ 1)=average of the remainder of the busy period in which a successful

transmission occurs.

Since the number of arrivals in the T+ 1 period will be the weight of the average of

the remainder of the busy period, then
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terml = T+ 1 + [ 1-qo(T + 1)]B(T+ 1)

is the probable length of time of the busy period in the case of a successful transmis-

sion. It is important to note that this is a recursive equation in that after the T + 1 slot

successful transmission is completed the average remainder of a T+ 1 transmission

must be added if a new arrival occurs during the transmission. The B(T + 1) term then

expresses the remainder after this transmission and contains the appropriate probabil-

ities to weight the average time for successful and unsuccessful transmissions.

In order to compute term2, we must consider the case of an unsuccessful trans-

mission. For unsuccessful transmission we let:

_/+ 1 = length of a busy period in which a collision occurs,

1-q0(_+ 1)= probability of one or more arrivals in the _,+ 1 period.

B(_/+ 1) = average of the remainder of the busy period in which an unsuccessful
transmission occurs.

By the same reasoning used to compute term1, we have

term2= _/+ 1 + [1--q0(_/+ 1)]B(_,+ 1)

which is the average length of the busy period in the case of an unsuccessful transmis-

sion.

Substituting the definitions of Pu, Ps, termt and term2 into the equation for

the average length of the remainder of the busy period, B(x) yields:

B(x)- ql(x) {T+ 1 + [1-q0(T+ 1)][B(T+ 1)])
1 -qo(x)

[ q'(x) ]{r+l+[l-qo(y+l)I[B(y+l)l}+ 1 1-qo(x)

If we consider only a successful transmission, then the remainder of the busy period
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becomes

B(T + I) = ql(T+ 1) (T+ 1 +[1-qo(T+ 1)][B(T+ 1)1}
1-qo(T + 1)

+
ql(T +._ 1). ,]1 1-qo(T+ 1)j

(y + 1 + [1 -qo(r + 1)][B(r + 1)1}

and similarly, in the case of an unsuccessful transmission, the remainder of the busy

period becomes

BO, + 1) =
q_(r + 1)

1-qo(7 + 1)
(T + 1 + [1-qo(T + 1)I[B(T + 1)l)

+ + 1 + [1-qo(r + 1)][B(y + 1)1)

Since only one slot time is required to initiate a transmission, (whether successful or

not), B" = B(1).

Now, we can see that

B(T + 1)[1-qt(T + 1)] =

+

B(y + 1)[1-ql(7 + 1)] =

+

ql(T + 1)
(T + 1)

1-qo(T + 1)

1- ql(T + 1) )1-qo(T + 1) (y + 1 + [1 -qo(y + 1)]B(y + 1)}

ql(7+ 1) {T+ 1 + [1-qo(T+ 1)]B(T+ 1)}
1-qo(? + 1)

1- qo(y + 1)- ql(Y + 1) /

\

1-qo(7 + 1) ] (_'
+ I + [l-qo(7 + l)]B(y+ i)}

qt(y+ 1) {T+ 1 + [1-q0(T+ 1)]B(T+ 1)}
B(y+ 1)[1-q1(7+ 1)-l+q0(7+ 1)+ql(y+ 1)] = 1-qo(7+ 1)

(l-q0(? + 1)-ql(? + 1)) 1)+ (r+
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and

B(T + 1)[1-qa(T + 1)l = q_(r + 1) (T + 1) +
1 -qo(y + 1)

+ 1 1-_y+i)'/[1-q°(y+ 1)] qo(y+ 1)'

ql(T + 1) )1 1-q0(T + 1) (y
+ 1)

1-q0(y + 1)-ql(y + 1)) )]{T + 1 + [1-qo(T + 1)]B(T + 1)1} + ]--qo_ + _ (Y + 1

We now have B(T+ 1) in terms of known parameters and may solve for other B(X)

values. But. the average duration of a busy period. B. is B(1). That means that

B(1) - ql(1) (T + 1 + [1-qo(T + 1)I[B(T + 1)l}
1 - q0(1)

I ql(x) ,[{y + 1 + + + 1)]}

"1

+ 1 1-q0(x)
[1 _ q_ 1)][B(y

_1

where again. B(T+ 1) and B(_/+ 1) are found from the equations:

B(T + 1) = ql(T + 1) {T + 1 + [1-qo(T + 1)I[B(T + 1)1}
1 -qo(T + 1)

+ + 1 + [1-qoO' + 1)][B(r + 1)]}

and

B(r + l) =

+

ql(Y + 1) (T + 1 + [1-qo(T + 1)][B(T + 1)]}
1 -qo(Y+ 1)

ql(Y + 1) ]1 1 - qo(Y + 1) {y
+ 1 + [1-qo(y + 1)][B(y + 1)1}
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The utilization U(x) may be found in a similar manner. This is the average re-

maining time the channel will be passing packets given that a transmission of length

x was just completed. During a successful transmission the value of utilization is T.

The equation for U(x) is given by the recursive equation:

U(x) - ql(x)
1 -qo(x)

{T + [1-qo(r + 1)][U(T + 1)1}

ql(x) ,]([1-qo(r ++ 1 1-qo(x)
1)]IU(v+ 1)]}

5.5 CSMA/CD CHANNEL DELAY ANALYSIS

A non-persistent protocol is considered in the following discussion. The prop-

erties of the model are as follows:

(a) The model consists of M stations (that is, a finite population model).

(b) At any given time, a station is either in the BACKLOGGED state or in

the THINKING state. If the station is in the THINKING state, it generates

a new packet in a slot with probability o and transmits the packet provided that

the channel is sensed idle. On the other hand, if the station is in the BACK-

LOGGED state, its packet either experienced a collision during an attempt at

transmission or its transmission was blocked due to the channel being busy.

(c) A BACKLOGGED device remains in that state until it completes a succes-

sful transmission of its packet at which time it switches back into the THINK-

ING state.
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(d) The reschedulingdelayof a BACKLOGGED packet is geometrically dis-

tributed with a mean of --1 slots. This can be modeled as each BACK-
v

LOGGED station sensing the channel in the current slot with a probability v.

If the channel is sensed clear, then the station can leave backlog, if not the sta-

tion remains in backlog. It is important to note that this policy is different than

the Ethernet backlog policy where a station must wait a designated number of

slots and then may sense the channel.

The transition probability matrix between consecutive points, E is generated

by considering the system to be an embedded Markov chain. The P matrix is the state

transition matrix between the embedded points Hi which are the probabilities that the

system has i stations in backlog. The matrix P can be expressed as the product of sever-

al single slot transition matrices. Tobagi in his paper indicates that

p=S(Q)T+ 1j+ F(Q)V+I, where the matrices S, E J, and Q are defined as follows.

The S matrix indicates the probability that after a successful transmission there

will be k stations in backlog if the system started with i stations in backlog at the begin-

ning of the transmission. The matrix Sik is defined as follows:

Sik =

O, k<i

(1 - a)M-i[iv(1 - v) i-1 ] k = i
1 - (1 - v)i(1 - a) M-i '

(M -i)o(1 - a)M-i-l[ 1 - V]i

:-(:- -a)M- 
• k=i+l

O, k>i+l

In Tobagi's second equation for Sik, the transmission comes from a station in

backlog and given there were i stations in backlog at the beginning of the transmission

there will be i-1 stations in backlog at the completion. Therefore. this equation is for
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k = i-1 not k = i as indicated. The third equation is for a successful transmission from

a thinking station given that there were i stations in backlog when the packet was gen-

erated by a station in the thinking state. At the completion of this transmission there

will be no additions to the backlog because this would require another station to have

generated traffic resulting in a collision and an unsuccessful transmission, therefore,

k=i not k=i+l.

The probability that the successful transmission comes from backlog is given

by the probability that no thinking station generates new traffic multiplied by the prob-

ability that only one backlogged station senses the channel conditional on there being

a transmission. The probability that none of the M-i thinking stations generates new

traffic is (1-o) M-i. The probability that only one of the i backlogged stations leaves

backlog is iv(l-v) i-1. This is the probability of one station leaving backlog multiplied

by the probability that i-1 stations do not leave backlog multiplied by i which is the

number of ways this event can happen. The probability is conditional on there being

a transmission. This probability is (1 - probability of no transmissions). The probabil-

ity of no transmissions is given by the probability that no backlogged station senses

the channel and no thinking station generates new traffic. This is given by the expres-

sion (1-o) M-i (l-u) i. Since the transmission is successful the backlog must either re-

main constant or decrease byone. There can only be one transmission and it can come

from a backlogged station or a thinking station.

The F matrix indicates the probability that there will be k stations in backlog

after an unsuccessful transmission attempt provided that there were i stations at the

beginning of the transmission. The matrix Fik is described as follows:
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Fik =

• O, k<i

(1 - a)M-i[1 -(1 - v)i-iv(1 - v) i-q
k=i

I - (1 - v)i(1- tT)M-i

(M- i)o(1 - o')M-i-I[1 -(1 - v) i]

1 -(1 - v)i(1 -a) u-i

M- i_(1 _ o.)M-kok-i

k-i]

1 - (1 - v)i(1 - or)M-i

, k=i+l

k>i+l

The probability that k < i is zero since no station can relieve itself of a back-

logged packet when a collision occurs. This, however, does not cover the contingency

that a packet is discarded after a given number of attempts. The probability that the

number of stations backlogged remains constant requires that no thinking station gen-

erate new traffic and that at least two stations leave backlog and attempt to transmit.

The probability that none of the (M-i) thinking stations generate new traffic is as given

above. The probability that two or more stations leave backlog is the probability that

at least one station leaves backlog given by [1-(1-v) i] minus the probability that only

one station leaves backlog as given above. This is again conditional on there being

a transmission. The probability that k = i + 1 after an unsuccessful transmission is giv-

en by the probability that exactly one thinking station generates new traffic and at least

one backlogged station attempts to leave backlog. This is given by [(M-

i)o(1-O) M-i-1 ] [(1-( 1-V)i]/[ 1-(1-O) M-i (l-v) i ]. Again this is conditional on there being

a transmission. The probabilitythat k > i+ 1 is given bythe probability that more than

one station generates new traffic. In order to use this expression in determining the

total system we wish to know the value of k after the unsuccessful attempt. It is, there-

fore, necessary to determine this probability for each value of k. This is dependent
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only on the number of newstationsgeneratingtraffic sincetwo or more of these will

result in a collision regardless of the activity of the backlogged stations. The probabili-

ty that k stations will leave backlog is given by.

1 - (1 - v)i(1 - (7) M-i '

k>i+l.

This is the probability that M-k stations do not leave backlog multiplied by the proba-

bility that k-i stations generate new traffic conditional on there being a transmission.

The Q matrix is used to indicate the probability of thinking stations generating

new traffic during a collision or a successful transmission and therefore going into

backlog. The J matrix indicates that the backlog is decreased on a successful transmis-

sion. Tobagi's Q and J matrices are, therefore, described as follows:

Qik =

0, k<i

M- i_(1 - o)M-ko k-i, k > i

k-i]

1, k--i-1Jik = 0, otherwise

However, the S matrix indicates the probability of a transmission from back-

logged and thinking stations. Both of these must be included in the state transmission

matrix Pij. This results in the equation defining Pij to be P = S(Q) T+ 1 + F(Q),¢+ t where

the matrices F and Q are defined as above and the S matrix with indices corrections

is described as follo_:
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Sik =

O, k < i-1

(1 - a)M-i[iv(1 - V) i-1 ] k = i-1
1 - (1 - v)i(1 - o) M'i '

(M- i)o(1 - o')M-i-I[ 1 - v] i

I- (1 - v)i(l- cr)M-i

O.

,k=i

k>i

The average channel throughput, S, is given by the average busy time divided

by the average cycle time. This may be expressed as follows:

u

S=

M

n(i)Ps(i)T
i=O

M

2 II(i){T_/+ : + Ps(i)T + [l-Ps(i)]y}
i=O

where Ps(i), the probability of transmission being successful given that there is a trans-

mission, is given by:.

Ps(i) =
(M- i)o(1 - el)M-i-l[ 1 - v]i -1- (1 - cr)M-i[iv(1 - v) i-1]

1 - (1 - v)i(1 - a) M-i

The average number of stations in backlog is given by the sum of stations in backlog

during each slot of a cycle divided by the average length of a cycle. The sum of back-

logs may be divided into two parts when the channel is idle or when the channel is

active. The average value of the backlog is given by the expression:

N=

M

rI(i)[T 7 ,+ A(i)]
i=O

M

E II(i){'_i + 1 + Ps(i)T + [1-Ps(i)]y}
i=0
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where 8i = (1-_/)i(1--o)M-iand A(i) is the expectedsum of backlogsover all slots in

the busyperiod after an idle period that hasi stations in backlog. This is givenby the

expression:

A(i) = S ff +
ij

The equation for A(i) should include the station that is transmitting. This may

be done by considering a thinking station that begins transmitting to be in backlog

until it completes transmission. This would follow Tobagi's original expressions for

Sik. By Little's result the average packet delay, D, may be expressed by:. D = N/S which

may be expressed by:.

w

D=

M

n(i)[ + A(i)I
i=O

M

II(i)Ps(i)T
i=0

5,6 PROGRAMMING AND RESULTS

A FORTRAN computer program was written to generate the elements of the

P matrix for any given set of parameters according to the method suggested in the pa-

per by Tobagi and Hunt. [TOBA87] The matrices involved contain many small num-

bers and the Q matrix when raised to the T+ 1 power quickly approaches all zeroes.

This led to many of the intermediate products being zero yielding NaN (IEEE floating

point representation of Not a Number) responses to some calculations. The system

usually provided good results if v was less than 0.15. For Ethernet a station whose

packet has collided will sense the channel with probability v = 0.5.

Of major concern was the output of the program run with the followin_ param-
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eters: M (number of stations) - 20, T (packet transmission time in slots) = 16,

o (probability of generationfor eachstation) = 0.1/(20"16) = 3.12500e-04,_/ = 2,

v = 0.1. Xpp(i,k) is the probability that given a transmission begins with i stations in

backlog there will be k stations in backlog at the completion of the transmission. Pi(i)

is the likelihood that their will be i stations in backlog. Throughput is normalized to

one were 1 would be 10 megabits/second. The value of 0.09987 is very close to the

offered load of 0.1. Delay is normalized to T, the packet length, which is 16 slots for

the data presented below.

xpp(O,O)
xpp(O,1)
xpp(1,o)
xpp(1,1)
xpp(1,2)
xpp(2,1)
xpp(2,2)
xpp(2,3)

= 0.89654910564423

= 9.5526792109013d-02

= 0.84863811731339

= 0.13602685928345

= 1.4704237692058d-02

= 0.83170044422150

= 0.15561614185572

= 1.2293432839215d-02

xpp(12,11) = 0.49854353070259

xpp(12,12) = 0.49486445449293

xpp(20,19) = 0.30593270063400

xpp(20,20) = 0.69406725803856

pi(O) =

pi(1) =

pi(2) =

pi(3) =

pi(4) =

pi(18) =

pi(19) =

pi(20) =

0.88266480634446

0.10759882424534

1.0393591330471d-02

4.4644482246755d-04

-2.1841781717240d-05

-8.9821003052080d-05

-9.5473198021788d-05

-1.0151982147586d-04

throughput= 9.98713e-02

delay= 1.2809 packet transmission times

The sums of the elements of the columns of Pij all equal one and this indicates

that the transition matrix calculations are valid. Some of the components of the Sik,

109



Fik and Qik matrices and values of Ps(n) were checked against values calculated on a

HP41-CV. The values were extremely close indicating that the Fortran routines were

correct. The Pij matrix for this as well as several other runs are given in Appendix C.

There are several trends that should be noticed. First, it is interesting to note

that for i less than 12, that system is likely to reduce the number in backlog while for

i = 12 the system is almost as likely to keep 12 in backlog as to reduce to 11 and at

i = 20 the system is much more likely to keep 20 in backlog than to reduce to 19 in

backlog. This is due to the value of v and looking at the other data it seems that the

probability that a backlogged station will sense the channel ( v ) must be very small,

i.e. less than 0.15 for stability and proper operation. The value 0.01 indicates that on

average it will take 100 slots for a station to leave backlog. This value is very high

for Ethernet where eight collisions are required for the backoff period to be normally

distributed over the range zero to 255 slots. The problem in modeling this system is

that when a large number of stations become backlogged, the exponential backoffal-

gorithm allows colliding stations to have longer and longer backoff periods until the

system clears. This is very hard to express in a mathematical model of the system

where only the present state of the machine is kept because the previous number of

collisions is required to be known for the backoff algorithm to work properly. The

attempted use of an average v did not yield good results, however, if a v(M,i,o) could

be found, it would improve the accuracy of the mathematical representation.

Another point of interest is that it is most likely that there will be no stations

in backlog and the probability of having i stations in backlog decreases as i increases.

The probability goes negative for pi(4) and grows in magnitude for increasing i. This

is attributed to accumulating error from the matrix multiplications and additions

where the matrices contain many small numbers. An idea around this is to estimate
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the I'I i for large i by an estimate of a previous Hi. The justification for this is that the

stationary probability that the system will have i stations in backlog should be less than

the stationary probability that the system will have k stations in backlog provided that

i > k. This holds true for small loads, however, as the offered load increases the proba-

bility that stations will be backlogged increases. At an offered load at or above 100

percent all M stations could be backlogged. A major concern for the system is that

p(20,20) is greater than 0.5 and usually between 0.7 and 1.0. This indicates the system

is likely to remain with these stations in backlog.

Another attempt was made to model the system mathematically using the tech-

nique presented in "Modeling and Analysis of Computer Communications Networks'"

by Jeremiah E Hayes as a guide. [HAYE84] The attempt to generate a delay versus

offered load plot for CSMA/CD using Equation (8.30), on page 230 resulted in large

errors compared to Gonslave's measured data and the models values of delay.

-- 1+1)_
D = _+ T(_ v

{ 1-e-X' ]22T ]- 2[B(O)v_(l_e__,r)] [_-

2[m-'2"+ 2_"r + + t.2 + 2(_" + T)(_) + r2(z-v)]
+ v-

1- ;L(m+

The resulting plot is shown as Figure 5.1. The general shape of the resulting

curve was similar to the other performance curves but, unfortunately, did not match

the data produced through the simulation procedure. This may be due to the fact that

Equation (8.30) is a simplified expression and does not utilize as many parameters as

the simulation.
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Figure 5.1 Output of Delay Equation

5.7 APPLICATION OF MATH MODEL TO MFA PROTOCOL

The math models that have been presented are for CSMA/CD networks with

a fixed channel sensing probability for stations in backoff. Though the backoff algo-

rithm is not the same as that of the Ethernet or MFA protocols the first model is a

good estimate of their performance. For low offered loads, when the average number

of stations in backoff is low, the model should give a rough approximation of perform-

ance.

The model can be used to compare performance between the Ethernet and

MFA protocols. The MFA protocol reduces a the probability of generating new traffic

while only slightly increasing average packet length. The scheduled period is consid-

ered to be one long packet and there will be no collisions during its transmission. For

a long network the propagation delay times must be included in the scheduled period.

The MFA protocol will still out perform Ethernet because during the scheduled period

the channel will run at maximum performance with no collisions. The MFA protocol

is for a system with scheduled data and its performance will be drastically reduced if

stations do not utilize their reserved periods. However. the scheduling of a slot for

particular transmissions may be required for some applications.
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6 pROTOCOL SIMULATORS AND OUTPUT

6.1 PROTOCOL SIMULATORS

A computer simulation program was written to verify the characteristics of the

protocol. Since the MFA protocol is similar to the Ethernet protocol, an Ethernet

simulator was written and verified first. The simulation parameters are for a short net-

work as would be found in an aircraft or other systems. However, the standard Ether-

net packet length's, preamble length and other parameters were kept. The channel

clearance time after a transmission was assumed negligible. The system is slotted and

only allows transmissions to begin at the slot edge. Collisions take one slot and idle

time is accounted for in the packet transmission time. The simulator is for use as a

comparison tool but with proper use of the variables it can be used to model systems

with varying distributions of offered load and unbalanced traffic offerings from the

terminals.

6,2 SIMULATOR OUTPUT DESCRIPTION

The following are sample plots of the data taken from the simulators. The no-

menclature used to identify the simulation the data is taken from is as follows. E'._o

indicates that the data is the output of the Ethernet simulator with a Poisson load.

There are four of these namely eao, ebo, eco, and edo. The a, b, c and d designations

indicate packet size with the values as follows:

a = packet size of 1 slot time (minimum allowable packet size)

b = packet size of 8 slt_t times (average packet size)

c = packet size of 64 slot times (maximum allowable packet size)

d = packet size of 3 slot times (packet used for comparison to Gonsalve's results).
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The outputs for simulatorswith scheduledloads are of the form o##A#. The

letter owasusedasan identifier that this is theoutput of asimulation asopposedto the

Pascalor executablecodefor thegivensimulation. The first number indicatesthe type

of simulation with numbers 1 through 3 indicating the following:

1 = Scheduledload usingEthernet protocol

2 = Scheduledload usingMFAprotocol with theSyncPacketcontendingfor thechan-

nel

3 = Scheduledload usingMFA protocol with the SyncPacket non--contending.

The secondnumber indicatesthe percentscheduleddata. This is takenasper-

cent of 10 megabit capacity that is scheduled. The simulations are run for offered

loadsof 10 through 100%by tenswith offered loads lessthan the amount scheduled

consideredto haveideal characteristics. The scheduledloads used in the trials were

10,20,30, 50and 70%. The letter is usedasit wasfor the Ethernet simulator to indi-

catepacket size. For the simulationsonly the packet sizesof a, b and cwere used.The

last number indicates the length of the scheduledcycle. The numbersusedwere 2, 3

and 4 indicating 100,1000and 10,000slot times respectively.

6.3 SIMULATOR OUTPUT PLOTS

The plots follow the expected trends with better performance as the scheduled

load component is increased for the MFA protocols and worse performance for the

Ethernet protocol as scheduled load is increased. The verification of the protocol

against Ethernet throughput is excellent with the delay and other parameters being
B

good.

The plots for Ethernet follow the expected patterns except for the mean delay

versus throughput curve for eco. The deviation is only for offered loads of 0.2 thru 0.6

and occurred on both machines. The random number generators for the machines
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yield different sequences so it seems unlikely that this is due to the traffic pattern gen-

erated by the random number generator. The simulations were run to require at least

5,000 transmissions to be completed and usually 50,000 transmissions were required.

This should result in an average value for the parameters. The initial and final values

of the eco plot follow the expected path so it appears that the either the delay for a

given throughput does increase rapidly or there is some possibility that the random

number generators have faults for these very small numbers. Histograms were made

of the random number outputs for the total range of zero to one as well as plots for

smaller ranges near zero. The appropriate number of points were found to lie in each

range. There were a few minor inconsistencies on the order of .1 percent but this

should not have been a problem.

The output from the simulator is presented in several curves. The performance

as a function of cycle time is interesting. The performance increases in terms of

throughput but delay increases because the Poisson traffic must wait until the end of

the scheduled period which adds to its delay tremendously for the 10,000 slot time

cycle.

Plots of delay versus throughput, throughput versus offered load, collisions ver-

sus offered load, delay versus offered load, packets lost versus offered load are pre

sented in Figures 6.1 through 6.33. It is important to note that offered load is gener-

ated load while throughput is a measure of packets that get through the channel. Pack-

ets that are lost due to insufficient queue space or excessive collisions are discarded.

Figures 6.1 and 6.2 indicate the output of the simulator for the Ethernet proto-

col with a pure Poisson load and the measured data from Gonsalves' paper.[GONS87]

This was used to verify the accuracy(validity)of the simulator. Gonsalves' network was

1500 meters long and included a repeater while the simulator models a short network.

This accounts for the slightly better performance of the simulated Ethernet.
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7 CONCLUSIONS

The Modified Free Access protocol/hardware system has been developed to

service communication systems that have a majority of Poisson distributed traffic

with some periodic time critical packets. The protocol was implemented with readily

available Ethernet hardware. This allows the protocol to be used economically in

many systems. Several additional station types were introduced to be used with the

Modified Free Access protocol. These include the pure Ethernet station, a 1-persis-

tent CSMA/CD station, and the limited station.

There was no requirement to develop software for the system as commonly

available host and terminal software can be used. Ethernet transport layer software

can easily drive a MFA terminal since it will only see an Ethernet terminal. The mod-

ifications of the standard terminal hardware will only affect the terminal's transmitter

section and this is hidden from the host.

7.1 PERFORMANCE OF THE MFA PROTOCOL

In order to study the performance of the MFA protocol a mathematical model

and a computer simulation of the protocol were developed. The math model is limited

in that only the present state of the system is known, namely the number of stations

in backlog. The offered load, a, and the probability that a backlogged station will

sense the channel, v, are the two input variables for the model. Throughput and aver-

age delay are the outputs of the model. The use of a fixed v does not accurately rep-

resent the Ethemet and MFA backoff algorithms but is a fair approximation. If an

appropriate method _o detem_ine v(6,M) could be found, it would be a valuable addi-

tion to the model.
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Thereare four different simulatorprograms. The first is to verify the software

simulation of the Ethernet protocol. The output was verified by comparison to Gon-

salves' Ethernet measured data[GONS87].

Gonsalves measured data is shown on

The comparison between simulation and

Figures 7.1 and 7.2. The simulators'

improved performance for small packet sizes is due to the difference in length of the

networks. The second program is to show the performance of the Ethernet protocol

when scheduled and Poisson traffic are generated by the stations. The third program

is a simulation of the MFA protocol when the sync packet contends for the bus to

begin the scheduled period. The fourth program is a simulation the MFA protocol

when the sync packet has exclusive access to the bus as soon as the bus is clear

after the beginning of a cycle.

The output of simulation one, the Ethernet simulation, compares well with

Gonsalves' results as shown in Figures 7.1 and 7.2. The output values of simulation

two indicated much poorer delay characteristics for the Ethemet protocol with a

scheduled load as compared to the Ethernet protocol with a Poisson load. This perfor-

mance degradation is as expected due to the increase in average collision rate for the

scheduled loads.

The differences in outputs for simulations three and four are minor for all

parameters except for average and maximum delay of scheduled traffic. These values

are considerably lower in simulation four compared to simulation three's values. This

indicates that the Td timer is valuable when the application requires minimal delay for

scheduled data.
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A comparison of Ethernet with a Poisson load, Ethernet with one and three

megabit scheduled mixed with a Poisson load and the MFA protocol with one and

three megabit scheduled loads mixed with a Poisson load is shown in Figures 7.3

and 7.4. The MFA protocol performs as well as the Ethernet protocol for all offered

loads. The Ethernet protocol does not perform well for the mixed scheduled and Pois-

son load.

The simulator's parameters were set to standard Ethemet values. The net-

work was considered to be short so the end to end propagation time was considered

negligible. The idle time after each transmission was considered as part of the trans-

mission. The simulator and math model yielded good results and were in agreement

with several previously published papers. The simulator was run with a slot time

equal to the round trip propagation delay to speed execution. A finer grain simulation

can be run with this simulator but this would take an excessive amount of time.

7.2 APPLICATIONS OF THE MFA PROTOCOL

The Modified Free Access (MFA) protocol is applicable to any system that

has a mixture of scheduled data and Poisson. If a system has many stations that gen-

erate Poisson traffic and only one station that must have immediate access to the bus

on a periodic basis then the Ethemet protocol may not be used due its CSMA/CD

nature. The MFA protocol allows many of the benefits of Ethernet for the Poisson

stations and still allows for the delivery of the time critical periodic traffic. Compared

to Ethernet, the MFA protocol provides improved throughput versus offered load and

throughput versus delay characteristics for any amount of scheduled load. There is a

slight overhead for the sync packet but this can be kept very small. The MFA proto-

col should be chosen over Ethernet for any application that has periodic traffic and
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Poisson traffic.

Table 7.1 is

ProNET- I0 protocols.

a comparison of the MFA, Ethernet, HYPERchannel, and

The MFA protocol resides in level 1, the physical layer, of the

seven layer model. The MFA protocol uses the second level Ethernet specification

and is also compatible with all Ethemet level three through seven software.

TABLE 7.1 COMPARISON OF PROTOCOLS

PROTOCOL:

BANDWIDTH

BOUNDED

ACCES S TIME

ARCH

EXPANSION

HARDWARE

AVAILABLE

MAX #

STATIONS

ACCESS TYPE

AVERAGE

DELAY FOR

POISSON SCH-

EDULED MIX

MFA

10

Y

BUS

EXCEL

Y

1024

HYBRID

CSMA/CD

LOW

Ethemet

10

N

BUS

EXCEL

Y

1024

CSMA/CD

MEDIUM

MIL-STD- 1553B

Y

BUS

GOOD

Y

31

COMMAND/

RESPONSE

'HIGH

ProNET- 10

10

Y

RING

POOR

Y

1024

TOKEN

MEDIUM

7.3 RECOMMENDATIONS FOR FURTHER WORK

The development of a protocol that only reserves a short starting period for

each station on a network is an obvious extension of the MFA protocol. This would

be useful in some applications but would require a considerable amount of additional

hardware. The extension of the MFA concept of scheduled and free access periods
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could be applied to manyother protocols. The applicationof similar ideas to FDDI

and a new HYPERchannelsystem that operatesat 100 megabits/secondare in the

developmentstage.

The developmentof an expressionof v(a,M) would be beneficial to both the

MFA and Ethemetmath models. Additionally, further study of the Ethernetproto-

col's performancefor non-Poissonoffered loadsshouldbemade.
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APPENDIX A SIMULATOR OUTPUT

A.1 COLUMN HEADINGS

The columns of Table A.1 will be labeled by the following system:

0 = offered load

D = mean delay (milliseconds)

CR = collision rate (collisions/second)

B = average backoff period (slot-times)

T = total thoughput

Ti = information throughput

LQ = percentage of packets lost due to insufficient

queue space
LD = percentage of packets lost due to excessive delay

Note: A subscript "p", such as Xp, indicates that the quantitiy X is only for

packets with a poisson distributed arrival rate. Similarly, a suscript "s", such as Xs,

indicates that the quantity X is only for packets scheduled to arrive at the beginning

of a cycle.

A.2 SIMULATION PARAMETER DESIGNATORS: N,N_LN_

For data labeled with a four character designator, NIN2LN3:

N1 indicates the way in which scheduled data appeared: 1 indicates each packet

of scheduled data must contend for the channel using the Ethernet protocol; 2 indi-

cates all scheduled data is contained in one long packet, which must contend for the

network: and 3 is like 2, except that the long packet containing the scheduled data.

without having to contend, gains access to the channel as soon as it is open at the begin-

ning of a cycle.

data.

N2 x 10 indicates the percentage of slots of the cycle that are used for scheduled
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L indicates the packet length: "a" indicates a packet length of I slot-time (64

bytes); "b", 8 slot-times: and "c", 24 slot-times.

Nj is the tens exponent of the length of the cycle, that is, the cycle length for

the simulation is 10 N3 slot-times long.

For example, the simulation parameter designator 12a3 would indicate that

each packet of the scheduled data must contend for the network (N1 = 1), 20% of the

cycle will be used for scheduled data (N2 = 2), the packets are 1 slot-time long (L = a),

and the cycles are 103 = 1000 slot-times long (N3 = 3).
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TABLE A.I Simulation Results

P

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

3.0

5.0

7.0

10.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

3.0

5.0

7.0

10.0

D

0.03

0.12

0.50

1.58

3.43

5.84

8.64

11.76

15.05

18.50

22.81

27.18

31.57

35.93

CR B T

Ethernet. packet-length = 1

188.04

1260.91

4335.04

9590.42

15857.17

22549.45

29794.13

37218.55

44940.77

52753.90

60823.32

70290.27

79964.12

89639.50

2.68

3.69

6.82

12.08

16.42

19.43

21.12

22.76

23.73

24.63

29.65

30.63

31.26

31.83

slot-time

9.96

19.64

28.19

32.64

33.80

33.92

34.00

33.94

33.97

33.91

33.42

33.66

33.94

34.15

LQ

0.36

0.72

2.02

5.15

8.19

10.09

10.91

11.29

11.24

11.05

29.98

33.42

31.63

30.95

0.02

0.06

0.15

0.35

0.80

1.77

3.46

5.89

8.96

12.56

18.54

24.77

31.14

37.52

Ethernet. packet-length = 3 slot-times

22.22

162.09

578.77

1498.28

3182.36

5803.59

9184.17

12979.90

17041.48

21263.41

26291.42

31859.15

37827.19

43784.88

2.31 10.01

2.83 19.84

3.58 29.61

5.00 39.07

7.47 47.48

11.48 53.83

15.75 57.35

19.94 58.84

23.21 59.27

25.70 59.09

37.50 57.43

39.64 56.84

40.37 56.88

41.39 56.82

0.26

0.29

0.42

0.56

0.98

1.77

2.92

4.02

4.97

5.71

24.28

29.73

29.33

29.58

LD

0.00

0.00

0.00

0.01

0.06

0.22

0.34

0.43

0.57

0.70

1.61

1.86

1.93

2.07

0.00

0.00

0.00

0.00

0.00

0.01

0.05

0.19

0.40

0.68

3.66

4.70

5.06

5.41
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P

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
3.0
5.0
7.0
10.0

D CR B T
Ethernet, packet-length =8 slot-times

2.35
2.68
3.36
4.39
6.26
9.15

13.04
18.02
23.60
28.44
48.72
51.45
52.24
53.17

4.67
36.00

132.45
355.32
792.38

1536.18
2653.88
4175.39
5966.85
7946.00

10873.38
13929.44
17086.43
20265.11

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
3.0

0.03
0.09
0.21
0.41
0.79
1.49
2.73
4.86
7.96

12.01
19.72
27.88
36.19
44.53

Ethernet, packet-length=
1.99
2,57
3.10
4.77
7.74
9.57

14.87
20.57
27.89
32.97
59.94

0.07
0,23
0.51
0.96
1.78
1.25
3.28
6.39

10.79
16.26
25.06

0.87
8.71

35.60
98.64

240.28
193.60
516.05
994.21

1610.15
2357.13
3692.56

10.06
19.93
29.75
39.38
48.73
57.52
65.07
70.84
74.09
75.58
75.64
75.52
75.60
75.56

24slot-times
10.04
19.76
29.48
39.28
49.67
58.74
67.36
74.95
80.63
84.19
89.40

LQ

0.26

0.27

0.32

0.39

0.46

0.69

1.02

1.54

2.20

2.88
19.29

25.57

26.44

27.51

0.22

0.27

0.33

0.36

0.43

2.97

2.26

2.20

2.74

3.09

23.19

LD

0.00

0.00

0.00

0.00

0.00

0.00

0.01

O.O7

0.41

0.97

10.95

13.65

14.95

16.06

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.12

0.84

2.02

30.44
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p I D

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

11a2

0.40

1.54

3.91

7.66

12.31

17.68

23.64

3O.04

36.67

11a3

4.71

8.97

13.33

18.56

24.86

31.93

39.66

48.00

56.51

1 la4

6.47

10.82

14.42

18.43

23.07

28.26

33.84

39.73

45.88

11b2

0.07

0.22

0.50

1.03

2.13

4.19

7.72

12.83

19.17

CR

1565.67

5647.87

11795.36

BI_

5.51

8.66

12.86

B_

6.65

10.07

14.58

T

19.57

27.47

32.15

LQp

3.88

6.88

10.38

LQ_

0.02

1.00

4.93

18591.11

25830.13

33324.82

40794.31

48474.99

56601.30

2208.72

6127.38

11809.51

18620.52

25768.82

33190.96

40781.78

48623.52

56968.67

1219.90

3851.37

8450.16

14670.50

21420.38

28569.97

35830.44

43573.18

51022.57

17.09

20.13

22.12

23.84

24.97

25.75

15.07

11.92

12.59

16.43

20.16

22.44

24.06

25.67

26.48

10.99

8.40

8.73

13.51

17.48

20.11

22.08

23.50

24.62

18.58

20.55

22.83

23.22

24.18

24.66

23.10

24.54

25.61

26.24

26.67

26.66

27.05

26.71

26.99

30.12

29.68

30.02

29.43

28.78

28.93

29.27

29.24

30.11

33.61

34.14

34.32

34.10

33.92

33.93

17.87

24.85

30.52

33.34

34.15

34.33

34.23

34.15

34.33

13.84

22.21

29.47

33.13

34.03

34.35

34.22

34.30

33.97

13.25

14.43

14.69

14.55

14.18

13.56

21.13

14.91

13.15

13.91

14.94

15.18

14.99

14.55

13.77

11.12

7.03

6.50

8.93

11.19

12.32

12.79

12.72

12.57

12.42

17.79

22.68

26.36

29.06

30.10

0.00

0.01

0.10

0.47

1.10

1.47

1.89

2.38

2.42

51.05

52.42

53.38

54.11

55.19

55.63

56.21

56.61

56.66

51.94

216.74

562.34

1196.94

2203.47

3641.60

5366.32

7259.53

9321.35

2.79

3.42

4.80

6.93

10.83

15.75

21.12

27.26

31.12

2.62

3.16

4.25

5.64

8.57

11.99

17.71

22.39

27.55

25.92

35.83

45.43

54.64

63.10

69.83

73.73

75.26

76.05

0.83

0.70

0.78

0.97

1.29

1.97

2.78

3.76

4.41

0.00

0.00

0.01

0.02

0.81

2.51

9.92

19.22

29.29

LD

0.00

0.00

0.03

0.12

0.27

0.41

0.58

0.69

0.80

0.00

0.00

0.01

0.09

0.23

0.42

0.59

0.71

0.85

0.10

0.08

0.10

0.12

0.27

0.38

0.52

0.59

0.72

0.00

0.00

0.00

0.00

0.01

0.06

0.28

0.77

1.50
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0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

[ D
11b3

0.41
1.06
1.97
3.21
4.89
7.22

10.68
15.49
21.43

1lc4
3.02
5.59
8.13

10.79
13.79
17.32
21.54
26.74
33.04

12a2
2.41
6.87

12.94
20.20
28.47
37.43
46.94
56.80

12a3
9.38

18.67
28.28
38.85
5O.36
62.56
75.28
88.41

CR

122.12

408.08

895.29

1628.41

2674.23

4064.73

5785.07

7764.78

9851.03

54.07

146.93

284.63

481.91

762.02

1134.90

1636.58

2269.64

3015.52

4254.72

10667.88

17921.34

25531.43

33235.06

41037.27

49117.78

57136.02

3605.62

8874.31

15527.73

22649.03

29917.99

37712.06

45444.18

53578.26

B_

9.23

9.64

9.74

10.79

12.53

15.45

20.02

25.16

30.04

23.76

22.31

19.90

19.15

18.86

20.23

23.02

26.12

31.19

10.68

14.47

18.55

21.69

23.27

25.40

26.06

26.98

18.61

15.84

17.72

20.52

23.60

25.33

26.95

27.71

Bs

6.56

8.45

11.06

14.06

16.37

20.22

24.45

28.97

32.35

10.11

12.94

16.00

18.50

21.02

24.42

27.04

32.40

37.67

12.5I

16.94

20.23

22.24

24.10

24.76

26.12

26.29

26.65

27.34

27.19

27.76

27.58

28.27

27.86

28.47

T

20.34

30.10

39.68

48.77

57.35

64.84

70.32

73.83

75.39

18.36

27.65

36.92

46.07

55.04

63.18

71.01

77.67

82.60

27.59

31.57

33.40

34.18

34.29

34.22

34.29

34.16

26.22

31.14

34.20

35.11

34.89

34.99

34.74

34.73

LOp

0.94

0.95

0.98

1.18

1.41

1.84

2.51

3.28

4.05

0.80

0.71

0.72

0.75

0.81

0.92

1.08

1.33

1.67

20.17

21.65

21.46

20.64

19.62

18.55

17.19

16.17

36.12

26.10

22.44

21.22

20.45

19.06

17.90

16.69

LO_

0.00

0.00

0.00

0.00

0.00

0.08

0.20

0.87

1.68

16.35

22.43

27.37

32.01

35.57

4O.50

44.84

49.83

53.02

1.79

7.43

14.07

19.50

24.34

27.27

30.66

32.32

0.83

2.44

5.38

10.06

13.89

16.79

18.68

19.89

LD

0.00

0.00

0.00

0.00

0.00

0.02

0.14

0.52

1.30

0.00

0.00

0.00

0.02

0.07

0.18

0.41

0.78

1.64

0.00

0.05

0.19

0.37

0.55

0.72

0.84

1.02

0.00

0.04

0.11

0.31

0.56

0.69

0.88

0.97
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P

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.4
0.5
0.6
0.7
0.8
0.9
1.0

] D
12a4

10.25
17.42
23.60
29.77
36.58
43.87
51.59
59.53

12b3
1.20
3.10
5.57
8.68

12.59
17.78
24.38
32.46

13a2
7.07

15.77
25.96
37.27
49.50
62.18
75.53

13a4
12.80
22.62
30.99
39.40
48.37
57.77
67.51

13b2
0.16
0.53
1.40
3.41
7.29

13.10
20.64

CR

2103.05
5758.10

11391.49
18087.28
25180.68
32461.16
39867.02
47767.96

282.02
831.65

1670.54
2812.13
4316.65
6101.38
8086.51

10193.12

6422.26
13874.26
21600.12
29541.85
37441.77
45886.29
53894.05

2990.35

15.06
9.64
9.93

13.67
17.83
20.89
22.50
23.69

13.74
14.11
14.86
16.03
17.24
21.54
25.64
30.85

18.69
21.07
24.21
25.51
27.26
27.67
28.65

18.31

B_

30.65

30.34

30.62

30.76

30.60

29.86

30.85

31.22

9.43

12.07

14.23

16.94

19.94

23.09

26.70

30.45

19.75

22.46

24.25

25.92

26.55

27.18

27.68

30.95

T

16.42

23.79

30.37

33.42

34.37

34.45

34.27

34.37

29.85

39.39

48.53

56.97

64.80

70.21

73.67

75.25

32.12

33.83

34.39

34.64

34.46

34.68

34.45

19.04

LQrt

20.18

12.18

10.48

11.66

13.27

14.04

14.12

13.75

2.00

1.97

2.09

2.32

2.52

3.31

4.04

4.82

45.80

36.22

30.68

26.70

23.90

21.37

19.44

29.17

LQ_

57.95

58.73

59.45

60.59

61.48

61.73

62.42

62.58

0.01

0.04

0.08

0.17

0.92

3.26

7.26

13.08

10.55

16.24

21.86

26.32

29.78

31.63

34.29

60.15

7491.81

13781.69

20998.13

28422.5!

35954.30

43551.32

11.87

11.42

14.94

18.32

20.81

23.01

31.02

31.07

30.93

30.95

31.36

30.85

25.43

31.02

33.72

34.50

34.63

34.47

18.20 61.25

14.50 61.76

14.73 62.58

15.50 63.61

15.71 63.97

15.35 64.38

187.23

649.01

1503.58

2784.62

4434.01

6269.38

8259.57

4.00

5.77

8.97

13.98

20.45

25.59

3.54

4.45

6.97

11.19

15.97

21.01

41.90

51.46

60.71

68.13

72.83

74.83

1.62

1.54

1.77

2.58

3.58

4.64

29.94 25.26 75.84 5.41

0.00

0.01

0.35

2.17

7.71

16.55

25.13

LD

0.54

0.38

0.30

0.34

0.38

0.59

0.65

0.78

0.00

0.00

0.00

0.00

0.01

0.15

0.52

1.28

0.12

0.36

0.54

0.66

0.85

0.99

1.11

0.77

0.66

0.52

0.50

0.64

0.72

0.87

0.00

0.00

0.00

0.03

0.17

0.58

1.11
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P

0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.6
0.7
0.8
0.9
1.0

0.6
0.7
0.8
0.9
1.0

0.6
0.7
0.8
0.9
1.0

0.6
0.7
0.8
0.9
1.0

l D
13c2

0.23
0.83
2.44
6.15

13.06
22.57
33,89

13c4

5.58

10.88

16.12

21.49

27.18

33.31

40.03

15a2

14.25

29.59

45.71

62.55

79.97

15a4

16.34

30.47

43.33

56.15

69.23

15b2

0.58

2.98

7.59

14.11

22.34

15b4

5.43

11.48

18.06

24.97

32.23

CR BI? Bs T LQ_

45.69

181.58

485.37

998.86

1660.09

2384.90

3164.96

3.68

7.77

14.85

24.40

31.82

35.57

39.60

2.74

3.59

6.54

10.39

16.68

22.59

28.07

57.90

67.45

76.62

83.43

86.19

87.10

87.44

1.83

1.62

1.78

2.47

3.18

3.52

3.87

139.80

333.90

593.12

927.92

1349.16

1863.02

2491.90

7888.23

16041.03

24273.34

32675.81

41167.32

4747.80

10746.31

18111.16

26075.72

33840.46

539.19

1672.93

3149.09

4841.42

6703.12

743.86

1669.56

2794.12

4130.47

5682.74

29.32

32.99

34.08

34.31

33.I5

31.84

31.86

28.35

27.92

28.43

29.78

30.24

23.49

17.28

14.79

16.67

20.05

9.94

16.13

21.35

24.82

28.75

24.38

24.70

25.76

26.38

28.23

12.91

16.05

18.89

20.67

22.62

25.19

28.69

27.68

28.45

29.23

29.42

29.67

31.14

31.30

31.36

31.67

31.35

6.19

11.22

15.66

19.85

23.50

15.91

18.86

21.25

24.07

26.33

31.82

39.44

47.20

54.65

61.67

68.08

74.43

35.39

35.39

35.34

35.31

35.29

24.36

28.72

32.48

34.32

34.64

65.49

71.81

74.28

75.36

75.94

44.87

49.86

54.77

59.80

64.36

1.73

1.66

1.59

1.56

1.68

1.72

1.82

74.07

51.31

39.97

32.90

27.97

46.64

30.44

23.57

21.32

20.27

3.39

4.74

5.79

6.27

6.82

5.64

4.63

4.46

4.32

4.33

LQ_

0.00

0.01

0.41

3.09

11.96

23.37

33.84

26.95

33.41

38.80

43.76

48.61

54.45

60.18

33.58

37.37

40.19

42.29

44.08

62.09

63.01

63.67

64.54

65.08

0.33

4.63

14.28

24.37

33.05

29.16

37.16

44.09

49.95

55.OO

LD

0.00

0.00

0.03

0.28

1.03

1.89

3.37

0.07

0.33

0.63

1.02

1.33

1.58

1.67

0.91

1.05

1.18

1.29

1.33

1.14

0.94

0.88

0.89

0.97

0.00

0.02

0.15

0.45

0.96

0.15

0.35

0.51

0.69

0.96
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15c2
0.6 0.77
0.7 4.36
0.8 11.69
0.9 20.73
1.0 31.32

15c4
0.6 6.68
0.7 13.41
0.8 20.38
0.9 27.62
1.0 35.42

17a2
0.8 17.78

_ 36.41

55.41

17b2
0.8 2.98

8.01

14.96

17b4
0.8 5.88
0.9 12.82
1.0 20.66

17c2
0.8 0.77
0.9 4.36
1.0 11.69

"'"UtV--

164.85

654.75

1268.22

13.78

30.31

34.59

3.67

7.95

13.96

""W--

81.78

88.22

88.01

3.04

3.98

4.51

0.05

2.95

14.62

1935.19

2657.17

225.95

509.22

872.07

1317.16

1842.14

8360.64

16735.13

25360.10

1061.89

2473.42

4102.16

1046.03

2278.54

3679.97

164.85

654.75

1268.22

36.61

39.98

33.12

34.13

39.21

40.79

39.48

30.33

28.69

30.58

18.88

22.09

25.68

25.35

26.16

27.45

13.78

30.31

34.59

18.06

21.55

13.85

17.07

19.66

21.32

23.48

29.90

30.47

30.52

11.99

15.41

18.85

15.97

18.49

21.65

3.67

7.95

13.96

88.09

88.02

45.25

51.42

57.33

63.06

68.20

35.88

35.37

35.45

74.28

75.64

75.99

58.39

61.40

64.33

81.78

88.22

88.01

4.56

4.53

2.56

2.52

2.57

2.54

2.58

81.90

56.45

42.96

6.78

7.29

7.63

8.07

6.95

6.23

3.04

3.98

4.51

24.84

34.71

29.28

35.63

41.15

45.99

51.94

50.52

52.97

54.35

9.62

19.39

29.34

29.74

37.49

44.98

0.05

2.95

14.62

"'K/Y-

0.01

0.38

0.90

1.52

2.53

0.14

0.44

1.25

2.01

2.37

1.24

1.41

1.52

0.03

0.15

0.41

0.22

0.36

0.61

0.01

0.38

0.90
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Pl D CR
25a4

3.il 1.72 174.75

3.7 4.71 861.24
D.8 7.85 2502.78

1" 10.65 5184.991. 12.89 8277.83

Bp

0.64

0.44

0.45

0.65

0.86

B,_ T T i Dins D_s l-LIr_ Lt.)s LLIslLL/

0.10 54.97 54.91 0.72 0.08 7.90 0.00 0.00 0.00

0.2t3 59.09 59.08 2.15 0.18 14.00 0.00 0.00 0.00

0.1'7 63.0763.06 3.02 0.22'20.00'0.00 0.00 0.001

0.41 64.9464.93 25.86 1.97 26.00 0.00 0.00 0.00

1.12 65.56 65.55 43.37 8.02 33.013 0.013 0.00 0.03

25b2
0.6 0.13 66.26

0.7 0.50 346.28

0.8 1.52 1006.19

0.9 3.54 2053.53

1.13 6.313 3330.55

0.17

0.34

0.83!

1.45

1.85

0.11 67.43 60.36 2.92 0.01_ 0.35 0.000.00 0.00

0.14 76.93 69.86 6.96 0.13 0.96 0.00 0.00 0.00

0.19 85.4578.38 31.64 0.26 2.70 0.00 0.00 0.05

0.26 91.0183.94 36.10 0.52 6.70 0.00 0.00 0.55

0.4_ 94.0186.94 58.93 1.07 12.00 0.00 0.00 1.34

25c2

0.6 0.10

0.7 0.21

0.8 0.66

0.9 1.06

1.(] 1.451

1.18 2195.12 2170.7": 84.88 61.65

2.39 2333.33 2000.00 84.88 61.65

44.20 2377.36 2225.81107.27 84.04

85.34 2401.61 2363.6,1107.30 84.07

125.51 2363.35 2225.81107.25 84.02

1.33 0.1,_ 0.2,1 0.00 0.00 0.00

1.33 0.12 0.25 0.00 0.00 0.00

1.64 0.37 0.41 0.00 0.00 0.00

1.64 0.3'7 0.36 0.00 0.00 0.00

1.64i0.3'_ 0.42 0.00 0.00 0.00

27a2

0.8 0.50 1390.30

0.9 1.43 3506.43

1.13 2.59 6154.30

1.24

1.86

1.96

0.14 78.82 77.81 6.66 0.1:3.40 0.00 0.00 0.18

0.25 79.90 78.89 36.56 0.413 13.00 0.00 0.00 0.59

0.4C 81.0280.01 38.20 0.8621.00 0.00 0.00 0.72

27b2

0.8 0.19 104.43

0.9 1.09 556.57

1.0 3.05 1393.49

0.27

1.07

1.99

0.1._ 83.5180.48 5.73 0.0_ 0.39 0.000.00 0.0C

0.14 92.15 89.12 9.01 0.213 1.80 0.00 0.00 0.1_

0.25 96.7293.69 27.80 0.57 6.10 0.000.00 1.2_

27c2

o.81O.lO
0.9 0.21

1.0 0.66

1.18 2195.12 2170.7": 84.8881.85 1.33 0.17 0.24 0.00 0.00 0.01

2.39 2333.33 2000.0( 84.88 81.85 1.33 0.17 0.25 0.0tq 0.00 0.0l

44.20 2377.36 2225.8] 107.27 104.2,_ 1.64 0.3'; 0.411 0.00 0.00 0.01
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cR
0.3 ! 0.03 3.46

0.4 ! 0.06 7.01

0.51 0.15 35.58

0.61 0.25 86.21

0.71 0.60 656.78

0.8 ! 1.25 1583.96

0.9 t 2.15 2862.81
1.01 2.99_ 4037.35

22b4
0.3 3.19 46.63

0.4 9.02 177.77

0.5 15.50 400.62

0.6 22.03 754.42

Bit B_ T Ti Dms D_s LQr_ LOs LDs LD

2166.67 2344.26 36.5431.49 0.87 0.08 0.00 0.00 0.00 0.00

2157.33 2384.00136.5431.49 0.72 0.08 0.013 0.00 0.00 0.00

2327.41 2542.2244.0739.02 1.18 0.11 0.013 0.013 0.00 0.00

2693.88 2398.0251.6046.54 1.64 0.17 0.013 0.013 0.00 0.00

3431.56 2371.86 66.7061.65 1.95 0.22 0.013 0.013 0.00 0.00

7498.51 4369.60 77.8672.81 5.17 0.42 0.0C 0.013 0.00 0.00

6994.90 19040.27 85.42 80.37 65.84 0.1 c 0.091 0.00! 0.02 0.10

6742.9727575,63 88.93 83,88 _6.67 0,1 c 0.13 0.00 0.02! 0.09

0.99

1.29

1.32

1.22

0.09 29.413 29.39 0.82 0.0'; 2.20 0.00 0.00 0.00

0.09 37.86 37.851 1.28 0.113 5.50 0.00 0.00 0.00

0.11 45.65 45.64 1.54 0.16 8.70 0.000.00 0.00

0.23 53.16 53.15 3.38 0.25 11.00 0.00 0.00 0.00

0.7'28.29 1286.73

0.8 34.48 2072.27

0.9 40.64 3139.62

1.e 47.01 4491.20

22C2

o.31o.o13 o.ool
0.41 0.013 0.00

1.10

1.02

1.04

1.19

0.00

0.00

0.5 0.00! 0.00 0.00

0.6 0.00 0.00 0.00

0.7 0.00 0.00 0.00

0.8 0.00 0.00 0.00

0.9 0.00 0.00 0.00

1_1"10.013 0.130 O flfl

23a2

0.4 0.11 800.03 0.21

0.5 0.64 3697.49 0.52

0.6 1.80 8020.40 0.91

0.7 3.31 13130.24 1.09

0.8 4.97 22477.49 0.9"}

0.9 6.43 27330.00 1.16

1.13 8.06 31341.89 1.31!

0.29 60.3"} 60.36 6.40 0.46 14.00 0.00 0.00 0.00

0.39 67.0(_ 67.05 17.41 0.9"} 16.00 0.00 0.00 0.01

1.59 72.6472.63'65.79 3.84!19.013 0.00 0.00 0.05

0.93 76.86 76.85 37.32 3.6( 23.013 0.013 0.00 0.16

0.00 12.30 7.25 0.00 0.0( 0.00 0.000.001 0.00

0.0012.30 7.25 0.00 0.0( 0.00 0.00 0.00 0.00

0.00134.89 29.84 0.00 0.0( 0.00 0.00 0.00 0.00

0.00 34.89 29.84 0.00 0.00 0.00 0.00 0.00 0.00

0.013 34.89 29.84 0.00 0.013 0.00 0.00 0.00 0.00

0.013 34.89 29.84 0.00 0.013 0.00 0.00 0.00 0.00

0.013 46.18 41.13 0.00 O.OC 0.00 0.00 0.00 0.00

0.fl(q 46.18141.13 000 0.13(79_fl 131q00(1 0.013 0_130

0.13 40.9839.97 2.20 0.08 0.81 0.00 0.00 0.00

0.18,48.7147.70 20.17 0.17 5.013 0.00 0.00 0.013

0.29!52.1251.11 28.98 0.513 15.013 0.013 0.00 0.08

0.47 54.13 53.12 i50.59 0.8'7 26.0C 0.013 0.05 0.213

0.62 61.03 60.02 75.32 0.513 33.0C 0.013 0.06 0.12

1.02 59.57 58.56 76.901 1.32 43.00! 0.0010.06 0.24

0.80 57.62 56.61 91.49! 2.0(_ 48.001 0.0010.05 0.42
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ptD
23a4

,4

.78 8.4010.36

12.52
16.22

23b2
0.4 0.05

0.5 0.10

0.6 0.22

0.7 0.37

0.8 0.83

0.91 2.21

1.0_ 2.70

23c2

0.3 0.00

0.4 0.00

0.5 0.001

0.6 0.00

0.7 0.00

0.8 0.00

0.9 0.00

1.0 0.00

25a2

0.4

0.5

0.6

0.7

0.8

0.9

1.(3

CR

1.48 213.81

3.813 1113.95

6.111 3375.62

7141.34

11359.73

15999.85

27091.06

3.46

6.96

35.58

94.79

704.97

1974.98

3201.74

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.11 800.03

0.64 3697.49

1.80 8020.40

3.31 13130.24

4.97 ).2477.49

6.43 ).7330.00

8.06 31341.89

Bp

0.59

0.39

0.43

0.63

O.87

1.00

1.08

B_ T T i Drns D_s LQn LQs LD_! LD

0.10 36.95 36.94 0.31 0.06 6.913 0.00 0.00 0.00

0.22 43.24 43.23 1.23 0.18 12.0C 0.00 0.00 0.00

0.19 49.05 49.04 1.59 0.21117.001 0.00 0.00 0.00

0.26 51.54 51.53 3.531 0.55:24.00 0.00 0.00 0.01

0.87 52.77 52.71 29.80 2.1933.00 0.00 0.00 0.05

0.37 52.95 52.98 20.74 4.7340.00 0.00 0.00 0.09

3.44 59.4559.441 13.31 3.0148.00 0.00 6.25 0.16

2177.11 2345.21 44.6241.59! 0.87 0.08 0.00 0.00 0.00 0.00

1840.54 2143.24144.6241.59 0.92 0.08 0.00 0.013 0.00 0.00

2330.29 2546.1552.1549.12 1.18'0.11 0.00 0.0O0.00 0.00

2131.93 2023.90 59.6856.65 1.23 0.12 0.00 0.00 0.00 0.00

3692.56 2768.94 74.7971.75 2.66 0.24 0.013 0.00 0.00 0.00

11896.2 4423.96 85.7482.71 9.78 0.57 0.013 0.00 0.001 0.07

3774.43 23758.1793.213 90.17 66.00 0.04 0.01 0.00 0.02 0.031

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 12.313 7.25 0.00 0.0C 0.0C 0.000.00 0.00

0.00 12.313 7.25 0.00 0.00 0.001 0.00 0.00 0.00
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3790.50 0.89 0.72 78.39 71.32 79.56 1.33 9.40 0.00 0.001 0.07
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241.71 1.24 0.15 48.54148.45 6.55 0.42 3.60 0.00 0.00 0.00
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10876.39 1.65 0.84 66.52:65.51 0.31 0.00 31.00 0.00 0.48 0.61
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APPENDIX B PROTOCOL SIMULATOR PROGRAMS

B,I ETHERNET PROTOCOL SIMULATOR

This program is an Ethernet simulator with Poisson offered loads.

program ENet_sim(input,eao);
function uniform(a,b:real:var U:integer):real: extern;

const

gap = 10; {distance, in meters, between terminals}

packet_length= 1: {length of packet in slot-times}

slot_time=51.2e-6; {round-trip propagation delay, in seconds}

N = 40; {number of terminals}
qlength_p = 1; {number of poisson generated packets that can be}

{stored by a terminal}

qlengths = 5; {number of scheduled packets that can be}

{stored by a terminal}
ST = 50000: {number of successful transmissions that must be}

{completed for the simulation}

pi = 3.141592654:

type

ptr= ^ node:

packet = record

length:integer:

delay:integer:

{number of slot times required to transmit re- }

{mainder of the packet.}

{number of slot times between generation of }

{packet and transmission}

end:

data = array[ 1..qlength_s] of packet:
node = record {Each node in linked lists contains information}

{describing one terminal on the network.}

transmitting:boolean: {transmitting flag (is terminal transmitting)}

queue:data; {info. describing queued pack-}

{ets}

backoff:integer: {slot-times until terminal may again attempt}

{transmission}

attempts:integer: {number of attempts at transmission of packet}

{described by queue[l] }

distance:integer: {distance to previous terminal_
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threshold:real: {used to determine if terminal has data arri-}

{ving during a slot time}

next:ptr; {pointer to next node on network}

end;

var

eao:text;

begin_delay.integer; {sum of all delays experienced by transmitted}

{packets}

collisions:integer; {number of collisions}

rho'real; {normalized throughput of the network}

steps:array[1..15] of real; {values of rho}

channel_busy, busy.boolean: {is the channel being used?}

etime:integer; {number of slot times simulated}

transmissions:integer; {number of successful transmissions completed}

transmitters: integer; {number of terminals with data to transmit in a}

{given slot time}

terminal:ptr: {pointer to a terminal}

first:ptr; {pointer to the first terminal}

packets_lost:integer; {total number of packets lost due}

{to excessive delay}

q_lost__p:integer; {poisson generated and scheduled packets lost}

{due to insufficient queue space}

{seeds for random number generators}SEEDi:integer;

i,j,ind,z:integer,

x:real:

poisson_.packets:integer; {tells how many of each type}

{of packet was transmitted}

p_count:integer; {number of scheduled and poisson type packets}

{generated}

bkoffs.bkftime:integer: {number of times terminals go into backoff, }

{and total amount of time spent in backoff}

function realint(n:integer):real:

begin

realint: = n;

end:

procedure initialize(var first:ptr:N.qlength:integer:rho:real:

var SEEDi:integer);
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vat

i,j:integer;

terminal:ptr;

t:real;

begin

SEEDi: = 56912:

t: - rho/N/packet_length;

new(first);

terminal: = first;

for i: - 1 to N do

begin
with terminal" do

begin

transmitting: = false;

distance: = gap;

attempts: = 0:

backoff: = 0;

threshold: = t;

for j: = 1 to qlength do

with queue[j] do

begin

length: = 0;

delay: = 0

end

end;

if (i = N) then
terminal ^ .next: = nil

else

begin

new(terminal ^ .next);

terminal: = terminal ^ .next:

end

end

end;

********************************************************************

procedure randint(var SEED, n:integer:limit:integer);

{This procedure produces a random integer in the variable n where 0 < n < limit.}

begin

n: = 1 + round(realint(limit- 1)* uniform(0,1,SEED));

end;

********************************************************************
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procedure inbackoff(var terminal:node: var SEED,packets_lost, bkoffs,bkftime:inte-

ger),
var

i:integer;

begin
bkoffs: = bkoffs + 1:

with terminal do

begin

attempts: = attempts + 1:

if attempts> 16 then

begin

attempts: = 0;

packets_lost: = packets_lost + 1;

for i: = 1 to (qlength_s-1) do

queue[i]: = queue[i + 1];

with queue[qlength_s] do

begin

length: = 0;

delay:. = 0
end

end

else

if attempts < = 8 then

randint(SEED,backoff, round(exp(attempts*ln(2))))
else

randint(SEED,backoff,256):
bkftime: = bkftime + backoff

end

end;

procedure add_data(var queue:data:packet_size:integer:var lost:integer);
var

i,qlength:integer:

begin

qlength: = qlength_p;

i: = 1; {move to empty spot in queue}

if qlength > 1 then

while (i < qlength) and(queue[i].length > 0) do
i:=i+ 1;

if queue[i].length = 0 then {i is at empty spot in queue, or}

with queue[i] do {at the lost spot in queue}

begin
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length: = packetsize;

delay: = -1
end

else

lost:. = lost + 1

end; {end procedure}

********************************************************************

**SmS**SSS)

begin {begin main program}

rewrite(eao);

writeln(eao,'N = number of stations = ',N);

writeln(eao,'packet length = ',packet_length:0);

writeln(eao,'# of transmissions that must be completed is',ST);

writeln(eao,'This is the Ethernet simulator.');

steps[l]: = 0.1:

steps[2]: = 0.2;

steps[3]: = 0.3;

steps[4]: = 0.4;

steps[5]: = 0.5;

steps[6]: = 0.6;

steps[7]: = 0.7;

steps[8]: = 0.8;

steps[9]: = 0.9;

steps[ 10]: = 1.0;

steps[ 11]: = 3.0;

steps[ 12]: = 5.0;

steps[ 13]: = 7.0:

steps[ 14]: = 10.0:
forz:=l to 14 do

begin

rho: = steps[z];

writeln(eao);

writeln(eao,'rho = ',rho:3:1);

channel_busy: = false:

transmissions: = 0: {init stats for each run}

bkftime: = 0;

bkoffs: = O:

q_lost_p: = O;

packets_lost: = O;

etime: = O:

initialize(first, N,qle ngth_s.rho,SEEDi);

while transmissions < ST do

begin
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terminal: = first;

ind: = O;

transmitters: = O;

busy:. = channel_busy
while terminal < > nil do

begin

ind: = ind + 1;

with terminal ^ do

begin

if backoff> 0 then backoff: = backoff-l:

x:= uniform(O,1,SEEDi);

if abs(x) < threshold then (is there new data acquired during}

(this slot time?}

begin

p_count: = p_count+ 1:

add_data(queue.packet_length.q_lost_p)

end:

i: = 1;

while (i < = qlength_s) and (queue[i].length > O) do

with queue[i] do

begin
if i = 1 then

begin

if transmitting then

begin

length: = length-l;

if length= 0 then {has all of packet been transmitted?}

begin

busy:. = false;

transmitting: = false:
transmissions: = transmissions + 1;

for j: = 1 to qlength_s-1 do

queue[j]: = queue[j + 11:

queue[qlength_p].length: = O;

end: {end if all of packet transmitted}

end {end if transmitting}

end: {end if i= l}

delay:. = delay+ 1;

i:=i+l;

end;

terminal: = next;

end;

end;

{end with queue[i]}

{end with terminal}

{end while terminal < > nil}
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channelbusy: = busy;,

terminal: = first;

ind: = O;

while terminal < > nil do

begin

with terminal ^ do

begin

if (queue[1].length > O) and (queue[1].length > O) and (not channel_busy) and

(backoff= O) then

(would this terminal like to transmit?}

begin

transmitters: = transmitters + 1;

if transmitters > 1 then

inbackoff(terminal ^ ,SEEDi,packets_lost, bkoffs, bkftime);

end: {end if this terminal has data}

terminal: = terminal ^ .next;

end;

end;

etime: = etime + 1;

if (not channel_busy) and (transmitters > 0) then

begin
terminal: = first:

while (terminal ^ .queue[ 1].length = 0) or (terminal ^ .backoff > 0) do
terminal: = terminal ^ .next;

with terminal^ do

begin
if transmitters = 1 then

begin

channel_busy: = true:

transmitting: = true:

attempts: = 0;

backoff: = 0;

begin_delay: = begin_delay+ queue[ 1].delay

end

else

begin
collisions: = collisions + 1:

inbackoff(terminal ^ ,SEEDi,packets_lost, bkoffs,bkftime)

end

end;

end; {end with terminal ^ }

end: {ST transmissions have now been simulated}

write(eao,'Mean Delay = ',realint(begin_delay)/ST*slot_time:7:5,' seconds');
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writeln(eao,' = ',realint(begin_delay)/ST:7:5,'slot times');
write(eao,'Mean backoff time = ',realint(bkftime)/realint(bkoffs)*slot_time:7:5,'

seconds');
wnteln(eao,' = ',realint(bkftime)/realint(bkoffs):7:5,' slot times');
wnte(eao,'Collision Rate = ',realint(collisions)/realint(etime)/slot_time:7:5);
wrlteln(eao,' collisions/second');
wnte(eao,'Packetslost due to excessivedelay = ');
wnteln(eao,realint(packets_lost)/ST*100:7:5,'%');
writeln(eao,etime:0,' slot times were simulated.');
wnteln(eao,'Throughput = ',ST*packet length/realint(etime)*100:7:5,'%');

wrtte(eao,'Poisson packets lost due to insufficient queue space = ');

wnte(eao,q_lost__p:0,' = ',realint(q_lost_p)/realint(p_count)*100:7:5);

wnteln(eao,'%');

end;

close(eao);
end.

B,2 MFA SIMULATOR PROGRAM ONE

This program is for scheduled data using the Ethernet protocol.

program MNetsim(input.pro 1 la2);

(This program simulates and Ethernet network where for there is scheduled data}

(based on a cycle of length cycle_length. When a terminal acquires scheduled }

(data, it must contend for the network as though the data were normal, poisson}

(data.}

function uniform(a,b:real:var U:integer):real: extern:

const

gap= 10: {distance, in meters, between terminals}

packet_length = 1: (length of packet in slot-times}

slot_time = 51.2e-6; {round-trip propagation delay, in seconds}

N = 40; {number of terminals}

qlength_p = 1: (number of poisson generated packets that can be}

{stored by a terminal}

qlength_s= 5; (number of scheduled packets that can be}

(stored by a terminal}

ST= 50000: (number of successful transmissions that must be}

(completed for the simulation}

pi = 3.141592654:

cycle_length= 100: (length of MFA cycle in slot-times}

type

ptr= ^ node:
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how_generated = (scheduled,poisson);

bkfcount = array[how_generated] of integer;

packet--- record

length:integer; {number of slot times required to transmit re- }

(mainder of the packet.}

delay.integer; {number of slot times between generation of }
{packet and transmission}

data_type:how_generated {indicates whether the packet is scheduled,}

{or poisson-generated data}
end;

data = array[ 1..qlengths] of packet;
node = record {Each node in linked lists contains information}

{describing one terminal on the network.}

transmitting:boolean: (transmitting flag (is terminal transmitting)}

queue:data; {info. describing queued pack-}

{ets}

backoff:integer; {slot-times until terminal may again attempt)
{transmission}

attempts:integer; {number of attempts at transmission of packet)

{described by queue[l] }

distance:integer; {distance to previous terminal}

threshold:real: (used to determine if terminal has data arri-}

{ving during a slot time}

next:ptr: {pointer to next node on network}

end;

var

prol la2:text:

be gin_de lay:inte ge r: {sum of all delays experienced by transmitted}

{packets}

collisions:integer; {number of collisions}

rho:real; {normalized throughput of the network}

steps:array[1..12] of real: (values of rho}

channel_busy, busy:boolean: {is the channel being used?}

etime:integer; (number of slot times simulated}

mtime:integer; {mfa cycle time counter}

transmissions:integer: (number of successful transmissions completed}

transmitters: integer: (number of terminals with data to transmit in a}

terminal:ptr;

first:ptr;

packets_lost:integer;

{given slot time}

{pointer to a terminal}

(pointer to the first terminal}

(total number of packets lost due}
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{to excessive delay}

q_lost_p,q_losts:integer; {poisson generated and scheduled packets lost}

{due to insufficient queue space}

SEEDi:integer; {seeds for random number generators}

i,j,ind.z:integer;

x:real:

fraction_scheduled:real; {ratio of scheduled traffic to bandwidth}

scheduled__packets.poisson_packets:integer; {tells how many of each type}

{of packet was transmitted}

s count.p_count:integer: {number of scheduled and poisson type packets}

{generated}

cycle_count:integer; {number of scheduled packets that must be gen-}

{erated per cycle}

sc__count:integer; {count of scheduled packets generated in curr-}

{ent cycle}

bkoffs.bkftime:bkfcount. {number of times terminals go into backoff. }

{and total amount of time spent in backoff}

:_ m m II¢ _ 8 _N _ll • S }

function realint(n:integer):real:

begin
realint: = n;

end;

procedure initialize(var first:ptr:N,qlength:integer:rho:real;

var SEEDi:integer):

"car

i.j:integer:

terminal:ptr:

t:real:

begin
SEEDi: -'- 56912;

t: = (rho-fraction_scheduled)/N/packet_length;

new(first);

terminal: = first;

for i: = 1 to N do

begin
with terminal ^ do

begin

transmitting: = false;

distance: = gap;

attempts: = 0:
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backoff: = 0:
threshold: = t;

for j: = 1 to qlength do

with queue[j] do

begin

length: = 0;

delay: = 0

end

end:

if (i = N) then
terminal ^ .next: = nil

else

begin

new(terminal ^ .next);

terminal: = terminal ^ .next:

end

end

end:

procedure randint(var SEED,n:integer:limit:integer);

{This procedure produces a random integer in the variable n where 0 < n < limit.}

begin

n: = 1 + round(realint(limit-1)* uniform(0,1,SEED));

end;

procedure inbackoff(var terminal:node: vat SEED, packets_lost:integer: vat

bkoffs.bkftime:bkfcount):

vat

i:integer;

begin
with terminal do

begin

attempts: = attempts + 1:

if attempts > 16 then

begin

attempts: = 0;

packets_lost: = packets_lost + 1;

for i: = 1 to (qlength_s-1) do

queue[i]: = queue[i + 1];

with queue[qlength_s] do

begin
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length: = O;

delay:. = 0
end

end

else

begin

bkoffs[queue[ 1].data_type]: = bkoffs[queue[ 1 ].data_type] + 1;

if attempts < = 8 then

randint(SEED, backoff, round(exp(attempts* ln(2))))
else

randint(SEED, backoff,256);

bkftime[queue[ 1].data_type]: = bkftime[queue[ 1 ].data_type] + backoff

end

end

end;

********************************************************************

procedure add_data(var queue:data:packet_size:integer;which:how_.generated:var

lost:integer);

var

i,qlength:integer;

begin

case which of

scheduled: qlength: = qlength_s:

poisson: qlength: = qlength_p

end; {end case}

i: = 1: {move to empty spot in queue}

if qlength > 1 then

while (i < qlength) and(queue[i].length > 0) do

i:=i+ 1:

if queue[i].length = 0 then {i is at empty spot in queue, or}

with queue[i] do {at the lost spot in queue}

begin

length: = packet_size;

data_type: = which:

delay: = - 1

end

else

lost: = lost + 1

end: {end procedure}

begin (begin main program}
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rewrite(pro 11a2);
wnte(prolla2,'These are the resultsof a simulation of a network in which');
wnte(prolla2,' eachterminal acquiresscheduled data during a ');
wnte(prolla2,'cycle of length ',cycle_length:0,' slot times such that');
wnte(prolla2,' terminal 1 receivesdata at the beginning of the cycle, ');
wnte(prolla2,'terminal 2 receivesdata 1 packet length later, and so on,');
wnte(prolla2,' until all the scheduleddata is accounted for. The remain');
wnte(prol la2,'ing time in the cycle is used by the network for transmission');
wnte(prolla2,' of poissongeneratedtraffic according to an Ethernet scheme.');
wnte(prolla2,' When a terminal receivesscheduled data it must contend');
wnteln(prolla2,' for the channel.');
write In(pro11a2);
wrlteln(prol la2,'N = numberof stations = ',N);
writeln(prol la2,'packet length= ',packet_length:0,' cyclelength= ',cycle_length:0);

wnteln(prol la2,'# of transmissions that must be completed is',ST);

fraction scheduled: = 0.1;

writeln(pro 11a2,'fraction of scheduled traffic = ',fraction_scheduled:3:1):

writeln(pro 1 la2,'This is program 1.');

steps[ 1 ]: = 0.1;

steps[2]: -'- 0.2;

steps[3]: = 0.3;

steps[4]: = 0.4;

steps[5]: = 0.5;

steps[6]: = 0.6;

steps[7]: ---0.7;

steps[8]: = 0.8;

steps[9]: = 0.9:

steps[ 10]: = 1.0;

cycle_count: = trunc(fraction_scheduled*cycle_length/packet_length);

if realint(trunc(fraction_scheduled*cycle_length/packet_length)) < fraction_sched-

uled*cycle_length/packet length then

cycle_count: = cycle_count + 1:
for z: = 1 to 10 do

begin

rho: = steps[z];

writeln(pro 1 la2);

writeln(pro 11 a2,'rho = ',rho:3:1);

channel_busy: = false;
if rho > fraction scheduled then

begin

transmissions: = 0: {init stats for each run}

bkftime[scheduled]: = 0:

bkftime[poisson]: = 0;
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bkoffs[scheduled]:= 0:

bkoffs[poisson]: = 0;

s count: = 0;

q_losts: = 0;

q_lost._p: = 0;

packets_lost: = 0;

etime:= 0;

mtime: = 0;

sc count: = 0;

initialize(first.N,qlength_s,rho,SEEDi);
while transmissions < ST do

begin
terminal: = first:

ind: = O;

transmitters: = O;

busy:. = channel_busy;
while terminal < > nil do

begin

ind: = ind+ 1;

with terminal ^ do

begin

if backoff> 0 then backoff:. = backoff-1;

if((mtime) rood (N) = (ind-1)*packet_length) and (sc_count < cycle_count) then

(beginning of MFA cycle}

begin

sc count:=sc count+ 1;

s count:=s count+l:

add_data(queue.packe t_le ngth,scheduled.q_lost_s)
end

else

begin

x:= uniform(0,1,SEEDi);

if abs(x) < threshold then {is there new data acquired during}

{this slot time?}

begin

p_count: = p_count + 1;

add_data(queue,packet_length,poisson,q_lost_p)

end

end;

i:=l;

while (i < = qlength_s) and (queue[i].length > 0) do

with queue[i] do

begin
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if i = 1 then

begin

if transmitting then

begin

length: = length-I;

if length = 0 then {has all of packet been transmitted?}

begin

busy:. = false;

transmitting: = false;

transmissions: = transmissions + 1:

for j: = 1 to qlength_s-1 do

queue[j]: = queue[j + 1];

queue[qlength_s].length: = 0;

end, {end if all of packet transmitted}

end {end if transmitting}

end; {end if i= 1 }

delay: = delay+ 1;

i:=i+l;

end;

terminal: = next;

end:

end:

channel_busy: = busy;,

terminal: = first:

ind: = 0:

while terminal < > nil do

begin

with terminal ^ do

begin

{end with queue[i]}

{end with terminal}

{end while terminal < > nil}

if (queue[1].length > 0) and (not channel_busy) and (backoff= 0) then

{would this terminal like to transmit?}

begin

transmitters: = transmitters + 1;

if transmitters > 1 then

inbackoff(terminal ^ .SEEDi.packets_lost.bkoffs.bkftirne):

end; {end if this terminal has data}

terminal: = terminal ^ .next;

end;

end;

etime: = etime + 1;

mtime: = mtime + 1; {setting cycle counters}

if mtime = cycle_length then

begin
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sc_count:= 0:
mtime: = 0;

end;
if (not channel_busy)and (transmitters > 0) then
begin
terminal: = first:

while (terminal ^ .queue[1].length = 0) or (terminal ^ .backoff> 0) do

terminal: = terminal ^ .next;

with terminal ^ do

begin
if transmitters = 1 then

begin

channel_busy: = true:

transmitting: = true:

attempts: = 0:

backoff: = 0:

begin_delay: = begin_delay + queue[ 1].delay
end

else

begin
collisions: = collisions + 1;

inbackoff(terminal ^ .SEEDi,packe ts_lost,bkoffs,bkftime)

end

end;

end: {end with terminal^ }

end; {ST transmissions have now been simulated}

write(pro 11 a2,'Mean Delay = ",realint(begin_delay)/ST*slot_time:7:5," seconds'):

writeln(prol l a2,' = ',realint(begin_delay)/ST:7:5,' slot times');

write(prol la2,'Collision Rate = ',realint(collisions)/realint(etime)/slot_time:7:5);

writeln(prol la2,' collisions/second'):

write(prolla2,'Mean poisson backoff time = ',realint(bkftime[poisson])/real-

int(bkoffs[poisson])*slot_time:7:5.' seconds');

writeln(prolla2.' = ',realint(bkftime[poisson])/realint(bkoffs[poisson]):7:5." slot

times');

write(prol la2.'Mean scheduled backoff time = ",realint(bkftime[scheduled])/real-

int(bkoffs[scheduled])*slot_time:7:5," seconds');

writeln(prolla2.' = ',realint(bkftime[scheduled])/realint(bkoffs[scheduled]):7:5,'

slot times');

write(prolla2,'Packets lost due to excessive delay = ');

writeln(pro 1 la2,realint(packets_lost)/ST* 100:7:5,'%');

writeln(prol la2.etime:0,' slot times were simulated.');

writeln(prolla2,'Throughput = ',ST*packet_length/realint(etime)*100:7:5,'%'):

writeln(prol la2,'Scheduled packets generated = ',s_count:0);
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wrlte(prolla2,'Scheduled packetslost due to insufficient queue space = ');

wnte(prol la2,q losts:0,' = ',realint(q_lost__s)/realint(s_count)* 100:7:5);

writeln(pro I 1 a2, '%');

wnte(prolla2,'Poisson packets lost due to insufficient queue space = ');

wnte(prol la2,q_lost_p:0,' --- ',realint(q_lost_.p)/realint(p__count)* 100:7:5);

wnteln(prol la2,'%');

end;

end;

close(pro 11 a2);

end.

B.3 MFA SIMULATOR PROGRAM TWO

This program implements the MFA protocol but the sync packet must contend

for the channel.

program MNetsim(input, pro21a2);

{This program simulates and Ethernet network where for there is scheduled data}

{based on a cycle of length cycle_length. When a terminal acquires scheduled }

{data, it must contend for the network as though the data were normal, poisson}

{data.}

function uniform(a,b:real:var U:integer):real; extern;

const

gap = 10; {distance, in meters, between terminals}

packet_length = 1: {length of packet in slot-times}

slot_time = 51.2e-6; {round-trip propagation delay, in seconds}

N = 40; {number of terminals}

qlength__p = 1: {number of poisson generated packets that can be}

{stored by a terminal}

qlengths = 5: {number of scheduled packets that can be}

{stored by a terminal}

ST = 50000: {number of successful transmissions that must be}

{completed for the simulation}

pi = 3.141592654;

cycle_length = 100: {length of MFA cycle in slot-times}

type

how__generated = (scheduled,poisson);

bkfcount = array[how__generated] of integer;

ptr= A node:

packet = record
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length:integer; {number of slot times required to transmit re- }

{mainder of the packet.}

delay.integer; {number of slot times between generation of }

{packet and transmission}

data_type:how_generated {indicates whether the packet is scheduled.}

{or poisson-generate d data}
end;

data = array[ 1..qlength_s] of packet:

node = record {Each node in linked lists contains information}

{describing one terminal on the network.}

transmitting:boolean; {transmitting flag (is terminal transmitting)}

queue:data; {info. describing queued pack-}

{ets}

backoff:.integer; {slot-times until terminal may again attempt}

{transmission}

attempts:integer; {number of attempts at transmission of packet}

{described by queue[l] }

distance:integer; {distance to previous terminal}

threshold:real; {used to determine if terminal has data arri-}

{ving during a slot time}

next:ptr; {pointer to next node on network}
end;

var

pro2 la2:text;

begin_delay.integer: (sum of all delays experienced by transmitted}

{packets}

collisions:integer; {number of collisions}

rho:real: {normalized throughput of the network}

steps:array[1..12] of real; {values of rho}

channel_busy, busy.boolean: {is the channel being used?}

etime:integer; {number of slot times simulated}

mtime:integer; {tufa cycle time counter}

transmissions:integer; {number of successful transmissions completed}

transmitters: integer; {number of terminals with data to transmit in a}

{given slot time}

terminal:ptr; {pointer to a terminal}

first:ptr; {pointer to the first terminal}

pkslst_s,pkslst_p:integer; {total number of scheduled and poisson}

{packets lost due to excessive delay}

q_lost_p,q_lost_s:integer: {total number of packets lost due to insufficient-}

{queue space}
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packets_generated:integer; {total number of packets generated}

SEEDi:integer; {seeds for random number generators}

i,j,ind.z:integer;

x:real;

fraction_scheduled:real; {ratio of scheduled traffic to bandwidth}

scheduled_data:boolean; {flag indicating the beginning of a cycle}

lp_in_queue:boolean; {flag indicating scheduled data has been placed in a queue}

mdelay_max, mdelay, mdelay_total:integer; {maximum. delay during cycle and }

{total delay experienced by scheduled data}

{(in slot times)}

cycles:integer; {number of cycles simulated}

long_packet:integer; {the length of the scheduled, extended packet}

infotxms:real; {number of packet of useful information transmitted}

bkoffs.bkftime:bkfcount: {number of times terminals go into backoff. }

{and total amount of time spent in backoff}

_SS* _I_li_Sm SS_Wt_m* S_*iI_* Bmm*mmsss ssmsss_lcsmmu._sss m**s.m_t** mss

function realint(n:integer):real;

begin

realint: = n;

end;

********************************************************************

procedure initialize(var first:ptr:N,qlength:integer;rho:real:

var SEEDi:integer);
var

i,j:integer:

terminal:ptr;

t:real:

begin

SEEDi: = 56912;

t: = (rho-fraction_scheduled)/N/packet_length;

new(first):

terminal: = first;

for i: = 1 to N do

begin

with terminal^ do

begin

transmitting: = false;

distance: = gap;

attempts: = 0;

backoff: = 0:

threshold: = t;
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for j: = 1 to qlength do

with queue[j] do

begin

length: = 0;

delay:. = 0

end

end;

if (i = N) then

terminal ^ .next: = nil

else

begin

new(terminal ^ .next);

terminal: = terminal ^ .next:

end

end

end:

********************************************************************

procedure randint(var SEED,n:integer;limit:integer);

{This procedure produces a random integer in the variable n where 0 < n < limit.}

begin

n: = 1 + round(realint(limit-1)*uniform(0,1,SEED));

end;

procedure inbackoff(var terminal:node: var SEED,pkslst_s,pkslst__p:integer; var

bkoffs,bkftime:bkfcount):

var

i:integer;

begin
with terminal do

begin

attempts: = attempts + 1:

if attempts > 16 then

begin

attempts: = 0;

case queue[1].data_type of

poisson: pkslst_p: = pkslst_p + 1:

scheduled: pkslst_s: = pkslst_s + 1:

end: {end case}

for i: = 1 to (qlengths-1) do

queue[i]: = queue[i + 11:

with queue[qlength_s] do
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begin
length: -- 0;

delay: = 0

end

end

else

begin

bkoffs[queue[1].data_type]: = bkoffs[queue[ 1].data_type] + 1;

if attempts < = 8 then

randint(SEED,backoff, round(exp(attempts*ln(2))))
else

randint(SEED,backoff,256);

bkftime[queue[ 1].data_type]: = bkftime[queue[ 1 ].data_type] + backoff
end

end

end:

function empty(queue:data;qlength:integer):integer;

{This function checks to see if there is an empty spot on the queue, and if}

{so, returns the place of that spot. If there is no empty spot, the function}

{returns a zero.}

var

i:integer;

begin

i:--- 1;

if qlength > 1 then

while (i < qlength) and(queue[i].length > 0) do

i:=i+l:

if queue[i].length = 0 then

empty:. = i

else

empty: = 0:

end:

********************************************************************

procedure add_data(var queue:data:packet_size:integer:which:how_generated:var

lost:integer);

var

i,qlength:integer:

begin

case which of

scheduled: qlength: = qlength_s:
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poisson: qlength:= qlength_p

end; {end case}

i: = empty(queue,qlength);

if i > 0 then {i is at empty spot in queue, or}

with queue[i] do {zero if the queue is full}

begin

length: = packet_size;

data_type: = which;

delay: =-1
end

else

lost: = lost + 1;

end; {end procedure}

begin {begin main program}

rewrite(pro2 la2);

write(pro21a2,'These are the results of a simulation of a network in which');

wnte(pro21a2,' terminal 1 acquires one long packet of scheduled data at');

wnte(pro21a2,' the beginning of a cycle. This long packet'):

wrlte(pro21a2,' accounts for all the scheduled data.');

wnte(pro21a2,' The rest of the cycle is used by the network');

wnte(pro21a2,' for transmission');

wnte(pro21a2,' of poisson generated traffic according to an Ethernet scheme.');

wrlte(pro21a2,' When terminal 1 receives scheduled data it must contend'):

wnteln(pro21a2,' for the channel.'):

wnteln(pro21a2);

wnteln(pro21a2,'N = number of stations = ',N);

wrlteln(pro21a2.'packet length = '.packet_length:0.' cycle length = '.cycle_length:0):

writeln(pro21a2,'# of transmissions that must be completed is',ST):

fraction_scheduled: = 0.1;

long. packet: = trunc(fraction_scheduled/packet_length*cycle_length)* pack-

et_length + 1:

if realint(trunc(fractionscheduled*cycle_length/packet_length)) < fraction_sched-

uled*cycle_length/packet_length then

long_.packet: = long_packet + 1;

writeln(pro21a2.'fraction of scheduled traffic = ',fraction_scheduled:3:l);

writeln(pro21a2,'This is program 2?);

steps[l]: = 0.1:

steps[2]: = 0.2:

steps[3]: = 0.3:

steps[4]: =0.4:

steps[5]: = 0.5;
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steps[6]:= 0.6;
steps[7]:= 0.7;
steps[8]:= 0.8;
steps[9]:= 0.9;

steps[10]: = 1.0;
for z: = 1 to 10 do

begin

rho: = steps[z];

writeln(pro21a2);

writeln(pro21 a2,'rho = ', rho:3:1 );

channel_busy: -- false;
if rho > fraction scheduled then

begin

transmissions: = 0; {init stats for each run}

bkftime[scheduled]: = 0;

bkftime[poisson]: = 0:

bkoffs[scheduled]: = 0;

bkoffx[poisson]: = 0;

q_lost_s: = 0;

pkslst_p: = 0;

pkslst s: = 0;

q_lost._p: = 0;

packets_.generated: = 0;

etime: = 0;

cycles: = 0;

mtime: = 0;

mdelay: = 0;

mdelay_max: = 0;

mdelay_total: = 0:

scheduled data: = false:

lp_in_queue: = false;

initialize(first,N,qlength_s,rho,SEEDi);
while transmissions < ST do

begin

terminal: = first:

ind: = 0;

transmitters: = 0:

busy: = channel_busy;
while terminal < > nil do

begin

ind: = ind+ 1;

with terminal ^ do

begin
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if backoff> 0 then backoff: = backoff-1;

scheduled_data: = (mtime = 0) or scheduled_data;

if scheduled_data and (empty(queue,qlength_s) > 0) and not lp_in_queue then

begin

lp_in_queue: = true;

packets_generated: = packets__generated + round(realint(long_packet-1)/pack-

et_length);

add_data(queue.long..packet, scheduled,q_lost_s)
end

else

begin

x:= uniform(0,1,SEEDi);

if abs(x) < threshold then {is there new data acquired during}

{this slot time?}

begin

add_data(queue,packet_le ngth,poisson,q_lost_.p);

packets._generated: = packets_.generated + 1
end

end;

i:= 1;

while (i < = qlength_s) and (queue[i].length > 0) do

with queue[i] do

begin
if i = 1 then

begin

if transmitting then

begin

length: = length- 1;

if length = 0 then (has all of packet been transmitted?}

begin

busy:. = false;

transmitting: = false;

transmissions: = transmissions + 1;

for j: = 1 to qlength_s-1 do

queue[j]: = queue[j + 1 ]:

queue[qlength_s].length: = 0;

end; {end if all of packet transmitted}

end {end if transmitting}

end; {end if i= 1}

delay:. = delay+ 1:

i:=i+ 1;

end: {end with queue[i]}

terminal: = next;
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end; {end with terminal}
end; {end while terminal < > nil}

channel_busy:-- busy;,

if scheduled data then

mdelay:. = mdelay+ 1;

terminal: -- first;

ind: = 0;

while terminal < > nil do

begin
with terminal" do

begin

if (queue[1].length > 0) and (not channel_busy) and (backoff= 0) then

{would this terminal like to transmit?}

begin

transmitters: = transmitters + 1;

if transmitters > 1 then

inbackoff(terminal ^ ,SEEDi,pkslst_s,pkslst_p,bkoffs,bkftime):

end: {end if this terminal has data}

terminal: = terminal ^ .next:

end;

end:

etime: = etime + 1;

mtime: = mtime + 1; {setting cycle counters}

if mtime = (cycle_length-I) then

begin

mtime: = 0;

cycles: = cycles + 1

end;

if (not channel_busy) and (transmitters > 0) then

begin
terminal: = first;

while (terminal ^ .queue[1].length = 0) or (terminal ^ .backoff> 0) do
terminal: = terminal ^ .next:

with terminal^ do

begin

if transmitters = 1 then

begin

channel_busy: = true;

transmitting: = true:

attempts: = 0:

backoff: = 0:

begindelay: = begin_delay + queue[ 1 ].delay:,

if queue[ 1].length > packet_length then
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begin

if mdelay_max < mdelay then mdelay_max: = mdelay;

mdelay_total: = mdelay_total + mdelay;

lp_in_queue: = false:

mdelay: = O;

scheduled data: = false

end {end if packet is scheduled data}

end {end if transmitting}

else

begin

collisions: = collisions + 1;

inbackoff(terminal ^ ,SEEDi,pkslst_s,pkslst_p,bkoffs,bkftime)
end

end;

end;

end;

{end with terminal ^ }

(ST transmissions have now been simulated}

infotxms: = realint(transmissions)+ realint(cycles)* (fraction_sched-

uled* cycle_length/packe t_length- 1);

transmissions: = transmissions + round(realint(cycles)*((long_packet-1)/pack-

et length));

write(pro2 la2,'Mean Delay = ',realint(begin_delay)/realint(transmis-

sions)*slot_time:7:5,' seconds');

writeln(pro21a2,' = ',realint(begin_delay)/realint(transmissions):7:5.' slot times');

write(pro21a2,'Collision Rate = ',realint(collisions)/realint(etime)/slot_time:7:5);

writeln(pro21a2,' collisions/second');

write(pro21a2,'Average poisson backoff time = ',realint(bkftime[poisson])/real-

int(bkoffs[poisson]):7:5):

writeln(pro21a2.' slot times = ',realint(bkftime[poisson])/realint(bkoffs[pois-

son])*slot_time:7:5,' seconds');

write(pro21a2.'Average scheduled backoff time = ',realint(bkftime[sched-

uled])/realint(bkoffs[scheduled]):7:5);

writeln(pro21a2,' slot times = ',realint(bkftime[scheduled])/realint(bkoffs[sched-

uled])*slot_time:7:5,' seconds');

writeln(pro21a2.etime:0,' slot times were simulated.');

writeln(pro21a2,'Throughput = ',realint(transmissions)*packet_length/real-

int(etime)* 100:7:5,'%');

writeln(pro21a2,'Information throughput = ',infotxms*packet_length/real-

int(etime)* 100:7:5,'%');

write(pro21a2,'Maximum delay for scheduled data = ',mdelay_max:0.' slot times

= ');

writeln(pro2 la2.realint(mdelay_max)*slot_time:7:5,' seconds');

write(pro21a2.'Average delay for scheduled data = ',realint(mdelay_total)/real-

int(cycles):7:5);
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writeln(pro21a2,' slot times = ',realint(mdelay_total)/realint(cycles)*slot_time:7:5,'
seconds');

write(pro21a2,'Poissongeneratedpacketslost due to insufficient queue');
write(pro21a2,'space = ',q_lost_p:0,' = ');

wnteln(pro21a2,realint(q_lost__p)/realint(packets__generated)* 100:0,'%');

wnte(pro21a2,'Scheduled generated packets lost due to insufficient queue');

wnte(pro21a2,'space = ',q_lost_s:0,' = ');

writeln(pro2 la2,realint(q_lost_s)/realint(packets__generated)* 100:0,'%');

wrlteln(pro21a2,cycles:0,' cycles were simulated');

wnte(pro21a2,'Scheduled packets lost due to excessive delay = ');

wnte(pro21a2,pkslst_s:0,' = ");

write(pro21 a2,realint(pkslst_s)/realint(cycles)* 100:7:5,'%');

writeln(pro21a2,' of scheduled packets');

wnte(pro21a2,'Poisson packets lost due to excessive delay = ');

wnte(pro21a2,pkslst_p:0,' = ');

wnte(pro21a2,realint(pkslst_p)/realint(transmissions)* 100:7:5,'%');

writeln(pro21a2,' of all packets (poisson and scheduled)');

end;

end;

close(pro21a2);
end.

B.4 MFA SIMULATOR PROGRAM THREE

This program implements the MFA protocol and allows scheduled data to gain

control of the channel as soon as the bus is clear after the beginning of a cycle.

program MNet_sim(input, output):

{This program simulates and Ethernet network where for there is scheduled data}

{based on a cycle of length cycle_length. When a terminal acquires scheduled }

{data, it will gain access to the channel as soon as the transmission in prog-}

{ress (when the terminal acquires the scheduled data) is completed.}

const

gap = 10; {distance, in meters, between terminals}

packet_length = 1; {length of packet in slot-times}

slot_time=51.2e-6: {round-trip propagation delay, in seconds}

N = 40; {number of terminals}

qlength__p = 1: {number of poisson generated packets that can be}

{stored by a terminal}

qlength_s = 5: {number of scheduled packets that can be}
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(stored by a terminal}
ST= 50000; (number of successful transmissions that must be}

(completed for the simulation}

pi = 3.141592654;

cycle_length= 100; (length of MFA cycle in slot-times}

type

how_generated = (scheduled,poisson);
bkfcount = army[how_generated] of integer:

ptr= ^ node;

packet = record

length:integer; (number of slot times required to transmit re- }

{mainder of the packet.}

delay.integer; {number of slot times between generation of }

{packet and transmission}

data_type:how_generated (indicates whether the packet is scheduled,}
{or poisson-generated data}

end;

data = army[ 1..qlengths] of packet;

node = record (Each node in linked lists contains information}

(describing one terminal on the network.}

transmitting:boolean; (transmitting flag (is terminal transmitting)}

queue:data: {info. describing queued pack-}

{ets}
backoff:integer; {slot-times until terminal may again attempt)

(transmission}

attempts:integer; (number of attempts at transmission of packet)
(described by queue[l] }

distance:integer: (distance to previous terminal}

threshold:real: (used to determine if terminal has data arri-}

{ving during a slot time)

next:ptr: (pointer to next node on network)
end:

var

begin_delay.integer; {sum of all delays experienced by transmitted}

{packets}

collisions:integer: (number of collisions}

rho:real; {normalized throughput of the network}

steps:array[1..12] of real: (values of rho}

channel_busy, busy.boolean: {is the channel being used?}
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etime:integer; {number of slot times simulated}

mtime:integer; {tufa cycle time counter}

transmissions:integer; {number of successful transmissions completed}

transmitters: integer; {number of terminals with data to transmit in a}

{given slot time}

terminal:ptr; {pointer to a terminal}

first:ptr; {pointer to the first terminal}

pkslst_s,pkslst_p:integer; {total number of scheduled and poisson}

{packets lost due to excessive delay}

q_lost__p,q_lost_s:integer; {total number of packets lost due to insufficient-}

{queue space}

packets_.generated:integer, {total number of packets generated}

SEEDi:integer; {seeds for random number generators}

i,j,ind.z:integer;

x:real:

fraction_scheduled:real: {ratio of scheduled traffic to bandwidth}

scheduled_data:boolean; {flag indicating the beginning of a cycle}

sched at head:boolean: {flag indicating that scheduled data is at the head of the

line}

lp_in_queue:boolean; {flag indicating scheduled data has been placed in a queue}

mdelay_max.mdelay.mdelay_total:integer: {maximum, delay during cycle and }

{total delay experienced by scheduled data}

{(in slot times)}

tx_length:integer: {used in determining if a terminal may transmit}

cycles:integer: {number of cycles simulated}

long_packet:integer; {the length of the scheduled, extended packet}

infotxms:real: {number of packet of useful information transmitted}

bkoffs.bkftime:bkfcount: {number of times terminals go into backoff. }

{and total amount of time spent in backoff}

function realint(n:integer):real:

begin

realint: = n;

end:

procedure initialize(var first:ptr:N.qlength:integer:rho:real;

var SEEDi:integer):

var

i.j:integer;

terminal:ptr:

t:real;
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begin
SEEDi: = 56912;

t: -- (rho-fraction_scheduled)/N/packet_le ngth;

new(first);
terminal: = first;

for i: = 1 to N do

begin

with terminal ^ do

begin

transmitting: = false:

distance: = gap;

attempts: = 0;

backoff: = 0;

threshhold: = t;

for j: = 1 to qlength do

with queue[j] do

begin

length: = 0:

delay:. = 0
end

end;

if (i = N) then
terminal ^ .next: = nil

else

begin

new(terminal ^ .next);

terminal: = terminal ^.next:

end

end

end:

********************************************************************

procedure randint(var SEED,n:integer;limit:integer);

{This procedure produces a random integer in the variable n where 0 < n < limit.}

begin

n: = 1 + round(realint(limit- 1)* random(SEED));

end;

procedure inbackoff(var terminal:node: var SEED,pkslst_s,pkslst_p:integer: var

bko ffs, bkftime: bkfcount):

var

i:integer;
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begin
with terminal do
begin
attempts:= attempts+ 1;
if attempts> 16 then
begin
attempts:= O;
casequeue[1].data_typeof
poisson:pkslst_p:= pkslst_p+ 1;
scheduled:pkslst_s:= pkslst_s+ 1:

end; {end case}
for i: = 1 to (qlengths-1) do
queue[i]: = queue[i + 1];

with queue[qlength_s] do
begin
length: = O;
delay:.= 0
end

end
else
begin
bkoffs[queue[ 1].data_type]:= bkoffs[queue[ 1 ].data_type] + 1:

if attempts < = 8 then

randint(SEED,backoff, round(exp(attempts* In(2))))

else

randint(SEED,backoff,256);

bkftime[queue[ 1].data_type]: = bkftime[queue[ 1].data type] + backoff

end

end

end:

function empty(queue:data:qlength:integer):integer:

{This function checks to see if there is an empty spot on the queue, and if}

{so, returns the place of that spot. If there is no empty spot, the function}

{returns a zero.}

var

i:integer;

begin

i:=1:

if qlength > 1 then

while (i < qlength) and(queue[i].length > 0) do
i:=i+l;
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if queue[i].length= 0 then

empty: = i
else

empty:. = 0:

end:

procedure add_data(var queue:data:packet size:integer:which:how_generated:_r

lost:integer);
var

i,qlength:integer;

begin
case which of

scheduled: qlength" = qlength_s;

poisson: qlength: = qlength__p

end: (end case}

i: = empty(queue,qlength):

if i > 0 then {i is at empty spot in queue, or}

with queue[i] do {zero if the queue is full}

begin

length: = packet_size:

data_type: = which;

delay:. =-1
end

else

lost: = lost+ 1;

end: {end procedure}

begin {begin main program}

wnte(q'_ese are the results of a simulation of a network in which');

write(' a terminal acquires one long packet of scheduled data at'};

write(' the beginning of a cycle. This long packet');

write(' accounts for all the scheduled data.');

write(' The rest of the cycle is used by the network');

write(' for transmission');

write(' of poisson generated traffic according to an Ethernet scheme.'):

write(' When a terminal receives scheduled data it will have acc');

wnte('ess to the channel as soon as it is free i.e. the termi'):

writeln('nal with the scheduled data does not have to contend.');
wrlteln;

writetn('N = number of stations =',N):

writeln('packet length = ',packet_length:O,' cycle length= ".cycle_length:O);
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writeln('# of transmissions that must be completed is',ST);

fraction scheduled: = 0.1;

long_.packet: = trunc(fraction_scheduled/packet_length* cycle_le ngth)* pack-

et_length + 1;

if realint(trunc(fraction_scheduled* cycle_length/packet_length)) < fraction_sched-

uled* cycle_length/packet_length then

long_packet: = long_packet + 1;

writeln('fraction of scheduled traffic = ",fraction_scheduled:3:1);

writeln('This is program 3.');

steps[l]: =0.1:

steps[2]: =0.2;

steps[3]: = 0.3;

steps[4]: = 0.4;

steps[5]: = 0.5;

steps[6]: = 0.6;

steps[7]: = 0.7;

steps[8]: = 0.8;

steps[9]: = 0.9;

steps[ 10]: = 1.0;

forz:=l to 10do

begin

rho: = steps[z];

writeln;

writeln('rho -- '.rho:3:1);

channel_busy: = false;
if rho > fraction scheduled then

begin

transmissions: = O: {init stats for each run}

bkftime[scheduled]: = O:

bkftime[poisson]: = O;

bkoffs[scheduled]: = O;

bkoffs[poisson]: = O:

q_lost__s: = O:

pkslst_p: = O:

pkslst_s: = O:

q_lost_p: = O:

packets__generated: = O:

etime: = O;

cycles: = O:

mtime: = O;

mdelay: = -1;

mdelay_max: = O:

mdelay_total: = O;
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initialize(first, N,qlength_s,rho.SEEDi);
while transmissions< STdo
begin
terminal: = first;
ind: = 0:
transmitters:= 0;
busy:.= channel_busy:

scheduled data: = false;
m

sched at head: =false;

lp_in_queue: = false:

while terminal < > nil do

begin

ind: = ind+ 1;

with terminal" do

begin
if backoff> 0 then backoff: = backoff-l:

scheduled_data: = (mtime = 0) or scheduled_data:

if scheduled_data and (empty(queue.qlength_s)> 0) and not lp_in_queue then

begin

lp_in_queue: = true;

packets_generated: = packets_generated + round(realint(long_packet- 1)/pack-

et_length):

sched at head: = empty(queue.qlength_s) = 1:

if sched at head then

begin

if (not channel_busy) then transmitters: = 1

end:

add_data(queue.iong_packet.scheduled.q_lost_s);
end

else

begin

x:= random(SEEDi):

if abs(x)< threshold then {is there new data acquired during}

{this slot time?}

begin

add_data(queue.packe t_length.poisson.q_lost_p);

packets_generated: = packets_generated + 1
end

end:

i:=l:

while (i < = qlength_s) and (queue[i].length > 0) do

with queue[i] do

begin
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end:

terminal: = next:

end;

end:

if i= 1 then

begin

if transmitting then

begin

length: = length-l:

if length=O then {has all of packet been transmitted?)

begin

busy:. = false:

transmitting: = false:

transmissions: = transmissions + 1;

for j: = 1 to qlength_s-1 do

queue[j]: = queue[j + 1],

queue[qlength_.s].length: = O:

end; {end if all of packet transmitted)

end {end if transmitting)

end; {end if i = 1}

delay:. = delay + 1:

i:=i+ 1;

{end with queue[i]}

{end with terminal}

{end while terminal < > nil}

channel_busy: = busy:

if scheduled_data then mdelay: = mdelay + 1;

terminal: = first:

ind: = 0;

while terminal < > nil do

begin
with terminal" do

begin

if (queue[1].length > 0) and (not channel_busy) and (backoff= 0) and (not

sched at head)then

{would this terminal like to transmit?)

begin

transmitters: = transmitters + 1:

if transmitters > 1 then

inbacko if(re rminal " ,SEE Di,pkslst_s,p ksls t_p, bko ffs,b k fti me):

end: {end if this terminal has data}
terminal: = terminal " .next:

end:

end:

etime: = etime + 1:

mtime: = mtime + 1: {setting cycle counters)
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if mtime = (cycle_length-l) then

begin
if scheduled data then

writeln('!!!!!!Scheduled data overlap ERROR!!!!!!!'):

mtime: = O;

cycles: = cycles + 1

end:

if (not channelbusy) and (transmitters > O) then

begin

terminal: = first;

if sched at head then

begin

sched at head:= false:

tx length: = packet_length + 1
end

else

tx_length: = l:

while (terminal ^ .queue[ 1].length < tx length) or (terminal ^ .backoff> O) do

begin

terminal: = terminal ^ .next:

if (terminal = nil) and (tx_length < > 1) then

begin

terminal: = first;

tx_length: = 1;
end

end;

with terminal^ do

begin
if transmitters = 1 then

begin

channel_busy: = true:

transmitting: = true:

attempts: = O:

backoff: = O:

begin_delay: = begin_delay + queue[ 1].delay:,

if queue[ 1].length > packet_length then

begin

if mdelay_max < mdelay then mdelay_max: = mdelay:

mdelay_total: = mdelay_total + mdelay;

lp_in_queue: = false:

mdelay: = - 1;

scheduled data: = false

end (end if packet is scheduled data}
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end {end if transmitting}
else
begin
collisions:= collisions + 1;

inbackoff(terminal ^ ,SEEDi.pkslst_s.pkslst_p,bkoffs.bkftime)
end

end;

end;

end;

{end with terminal "" }

{ST transmissions have now been simulated}

infotxms: = realint(transmissions) + realint(cycles)*(fraction_sched-

ule d* cycle_le ngth/packe t_l e ngth- 1 );

transmissions: = transmissions + round(realint(cycles)* ((Iong_.packe t- 1)/pack-

et_length));

write('Mean Delay = ',realint(begin_delay)/realint(transmissions)*slot_time:7:5.'

seconds');

writeln(' = ',realint(begin_delay)/realint(transmissions):7:5.' slot times');

write('Collision Rate = ',realint(collisions)/realint(etime)/slot_time:7:5);

writeln(' collisions/second');

write('Average poisson backoff time = ',realint(bkftime[poisson])/real-

int(bkoffs[poisson]):7:5);

writeln(' slot times = ',realint(bkftime[poisson])/realint(bkoffs[pois-

son])* slot_time:7:5.' seconds');

write('Average scheduled backoff time = ',realint(bkftime[scheduled])/real-

int(bkoffs[scheduled]):7:5);

writeln(' slot times = ",realint(bkftime[scheduled])/realint(bkoffs[sched-

uled])* slot_time:7:5,' seconds');

writeln(etime:0,' slot times were simulated.');

writeln('Throughput = '.realint(transmissions)*packet length/real-

int(etime)* 100:7:5,'%');

writeln('Information throughput = ',infotmns*packet_le ngth/reat-

int(etime)* 100:7:5,'%');

write('Maximum delay for scheduled data = ',mdelay_max:0,' slot times = ');

writeln(realint(mdelay_max)*slot_time:7:5.' seconds');

write('Average delay for scheduled data = ',realint(mdelay_total)/real-

int(cycles):7:5);
• • • _t " .writeln(' slot times = .reahnt(mdelay_total)/reahnt(cycles) slot_time:7:5, sec-

onds');

write('Poisson generated packets lost due to insufficient queue');

write('space = '.q_lost_.p:0.' = ');

writeln(realint(q_lost__p)/realint(packets_generated)* 100:0,'%');

write('Scheduled generated packets lost due to insufficient queue');

write('space = '.q_lost_s:0,' = ');

writeln(realint(q_lost_s)/realint(packe ts_gene rated)* 100:0.'%');
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wnteln(cycles:O,' cycles were simulated');

wnte('Scheduled packets lost due to excessive delay = ');

wnte(pkslst_s:O,' = ');
wnte(realint(pkslst__s)/realint(cycles)* 100:7:5,'%');

writeln(' of scheduled packets');

wnte('Poisson packets lost due to excessive delay = ');

wnte(pkslst_.p:O,' = ');
wnte(realint(pkslst_p)/realint(trammissions)* 100:7:5,'%');

wrlteln(' of all packets (poisson and scheduled)');
end:

end:

end.
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APPENDIX C MATH MODEL CALCULATIONS

C.1 MATH MODEL NOTES

A program was written to solve the equations given for throughput and delay of

the CSMA/CD protocol in Chapter 5 for different values of the parameters o and v.

The program is presented in section C.2 and the output of several trials are presented

in section C.3. The program was written for the modified Sik as defined in Chapter 5

of the text. The Sik used for the calculation of the average backlog during tranmission

,A(i), is as defined by Tobagi.

C.2 MATH MODEL PROGRAM

601

501

double

double

double

double

double

double

double

double

double

precision qt(0:100.0:100).xq(0:100.0:100)

precision sqt(0:100.0:100),xqq(0:100.0:100)

precmlon ps(0:100),xpp(0:100,0:100).trl(0:100,0:100)

precmlon ter2(0:100,0:100),sumt(0:100,0:100)

precision pi(0:100),sumg(0:100,0:100)

prectslon xmu(0:100),xqu(0:100),a(0:100)

precision xqc(0:100),xrnr(0:100),x_s(0:100.0:100)

precision xff(0:100,0:100),xqg(0:100,0:100)

precision xm 1(0:100.0:100),xrn2(0:100,0:100)

double precision dnd(0:100,0:100),xsd(0:100.0:100)

common xqc,xmr, l,xss

common xff, xqg,idd.sum.iq,iv

common igap,xm 1,xm2

print*.'input m'
read*,m

do 501 i=0,m

do 601 k=0.m

sumt(i,k) = 0.0

sumg(i,k) = 0.0

continue

continue

print*,'input sigma'

read*,sig

print*,'input packet length in slots'
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read*,id
print*,'the average traffic on the bus is',sig
sig= sig/m

c print*,'the number of stations = ',m

sig = sig/id

print*,'probabilty station will generate traffic in slot',sig
l=m-1

c********** generating the q matrix xq *************

c print*,'generating q matrix'
do 22 ii - O,m

do 33 ki = O,m

if(ki.lt.ii)then

xq(ii,ki) = 0.0

xqq(ii,ki) = 0.0

go to 44

else

rmm = m-ii

rkk = ki-ii

call bino(rmm,rkk,sig,r)

xq(ii,ki) = r

xqq(ii,ki) = r

xm2(ii,ki) = r
44 continue

end if

33 continue

22 continue

print*,'**** generating q**t+ 1 matrix xqq and q**gama+ 1 xqg ****

print*,'generating q** t + 1 and q**gama + 1'

print*,'input gama ?'

read*,iga

igap = iga + 1

do 80 idd = 1,id

do 31 iv= O,m

ia=O

do 13 i=O,m

xmr(ia) = xqq(iv, i)

print*,xmr(O,ia)

ia-- 1 +ia

13 continue

do 15 iq=O,m
ib=O

do 14 j = O,m

xqc(ib) = xq(j,iq)

C

C

C
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C

ib=ib+l

14 continue

call matm(m,xmr,sum,xqc, iv, iq,idd,igap)

qt(iv, iq) = sum

xqq(iv.iq) = sum

print*,'xqq(',iv, iq,') = ',xqq(iv, iq)

if(idd.ge.igap)go to 15

xqg(iv, iq) = sum

print*,'xqg(',iv, iq,') = ',xqg(iv, iq)
15 continue

31 continue

call matad(m,sumt,xqq,sumt)

if(idd.gt.igap)go to 80

call mamd(m,sumg,xqg,sumg)

print*,'sumt(',i,k,') = ',sumt(i,k)
80 continue

do 909 iva = O,m

print*,'qt + l(',iva,'O) = ',xqq(iva.O)

print*,'qg + l(',iva,'O) = ',xqg(iva.O)
909 continue

**** generating j matrix xjj ****

**** generating s matrix xss ****

print*,'generating s matrix'

print*,'input nu'

read*,xn

xnd = 1.-xn

sigd = 1.-sig

do 34 js = O,m

do 23 is = O.m

mi = m-is

iss = is-1

mii = mi- 1

iis-- is+ 1

if(js.eq.iss)then

xss(is,js) = ((sigd**mi)*(is*xn*xnd**iss))/(1-(xnd**is)*(sigd**mi))
else

if(js.eq.is) then

xss(is,js) = ((mi* sig*sigd* * mii)* xnd* * is)/( 1-(xnd* * is)* (sigd* * mi))
else

xss(is.js) = O.
end if

end if

23 continue
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C

C

34

808

823

834

continue

do 808 ixa = O,m

print*,'s(O', ixa, ') = ',xss(O, ixa )
continue

**** generating sd matrix xsd ****

print*,'generating sd matrix'
do 834 js = O,m
do 823 is = O,m
mi = m-is
iss = is-1
mii = mi-1

iis = is + 1

if(js.eq.is)then
xsd(is,js)= (sigd**mi)*(is*xn*xnd**iss)/(1-(xnd**is)*(sigd**mi))
else

if(js.eq.iis) then
xsd(is,is) = ((mi *sig* sigd* *mii)* xnd* * is)/( 1-(xnd* * is)* (sigd ** mi))
else

xsd(is,js) = O.
end if
end if
continue
continue

**** generating f matrix xff ****

print*,'generating f matrix'
do 55 if= O,m
do 65 iq = O,m

mf = m-iq
iff= iq-1
mmf= mr- 1

mff= m-jr

ji=jf-iq
igg = iq + 1

if(jf.eq.iq)then
xff(iq,jf) = (sigd** mr)

tempf= xnd**iff

tempf = iq*xn* tempf

tempf= tempf+ xnd**iq
tempf= 1.0-tempf
xff(iq,jO = xff(iq,jf)* tempf

xff-(iq,jf) = xff(iq,jf)/(1.O-(xnd**iq)* (sigd** mr))
else

if(jf.gt.igg) then
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C

C

C

rmm = m-iq

rkk = jf-iq

call bino( rmm,rkk,sig,r )

xff(iq,jf) = r/(1-(xnd**iq)*(sigd**mf))
else

if(jf.eq.igg) then

xff(iq,jf) = (mf* sig* (si gd **mmf)* ( 1-xnd* *iq ))

xff(iq,j f) = xff(iq,jO/(1-(xnd** iq)* (sigd** mf_)
else

xff(iq,jf) = O.
end if

end if

end if

65 continue

55 continue

total = O.

do 2502 ip = O,m
total = 0.0

do 2602 jp = O,m

total = total + xff(ip,jp)
2602 continue

print*,'xf:f(',ip,'total) = ',total
2502 continue

• *** (s)*(q**t + 1) *****

print*,'generating s*q**t+ 1"
do 310 iv=O,m
ia=O

do 130 i = O,m

xmr(ia) = xss(iv, i)
ia- 1 + ia

130 continue

do 150 iq = O,m
ib=O

do 140 j = O,m

xqc(ib) = xqq(j,iq)
ib=ib+l

140 continue

call matm( m,xmr, sum.xqc,iv, iq,idd,igap )

sqt(iv, iq) = sum

trl(iv, iq) = sqt(iv, iq)
continue

continue

total = O.

150

310

222



do 1502 ip = O,m

total = O.

do 1602 jp = O,m

total = total + sqt(ip,jp)

1602 continue

print*,'sqt(',ip,'total) = ',total
1502 continue

**** (xff)*(q**gama+ 1)=ter2 ****

print*,'generating xff*q**gama + 1'

do 710 iv=O,m

ia=O

do 730 i= O,m

xmr(ia) = xff(iv, i)

ia--ia+ 1

730 continue

do 750 iq = O,m

ib=O

do 740 j = O,m

xqc(ib) = xqg(j,iq)

ib--ib+ 1

740 continue

call matm(m,xmr,sum,xqc,iv, iq,idd,igap)

ter2(iv, iq) = sum

c print*,'ter2(',iv, iq,') = ',ter2(iv, iq)
750 continue

710 continue

c print*,'ter2 = ',ter2(O,O)

c **** trl + ter2=xpp ****

c print*,'generating xpp"
do 800 ix= O,m

do 801 ix= O,m

xml (ix, ix) = trl(ix, jx)

xm2(ix, jx) = ter2(ix, jx)
801 continue

800 continue

call matad(m,xml,xm2,xpp)
total=O.

do 502 ip = O,m
total = O.

do 602 jp = O,m

total = total + xpp(ip,jp)

if (jp.ge.ip-l.and.jp.le.ip + 1 ) then

print*,'xpp(',ip,jp,') = ",xpp(ip,j p)
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C

C

C

905

C

C

99

321

goto 1234

else

1234 continue

end if

602 continue

print*,'xpp(',ip,'total) = ',total
502 continue

*"* ps calculation ****

print*,'generating ps'

do 905 ip=O,m

mi = m-ip

print*,'mi(',ip,') = ',mi

rail = m-ip-1

print*,'mil = ',mil

il = ip-I

print*,'il = ',il

ps(ip)=(mi*sig)*(sigd**mil)*(xnd**ip)+ (ip*xn)*(xnd**il)*(sigd**mi)
print*,'psp(',ip,') = ',ps(ip)

aterm = (xnd**ip)

print*,'aterm = ',aterm

bterm = (sigd** mi)

print*,'bterm = ',bterm

cterm = aterm* bterm

print*,'cterm = ',cterm

xpn = 1.O--cterm

print*,'xpn(',ip,') = ',xpn

ps(ip) = ps(ip)/xpn

print*,'ps(',ip,') = ', ps(ip)
continue

**** pi calculations *****

print*,'generating pi'

pi(O) = 1.0

pi(1)= pi(O)-xpp(O,O)

pi(1)=pi(1)/xpp(1.0)

print*,'pi(1) =',pi(1)

do 123 j = 1,m-1

ji=j+ 1
i=O

sump=O.O

if(i.gt.j)go to 322

do 321 ii = i,j

sump = sump + pi(ii)*xpp(ii,j)
continue
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322

c 127
123

456

567

C

C

78

87

pi(jj) = pi(j)-sump

pi(jj) = pi(jj)/xpp(jj,j)

print*,'pi(',jj,') = ',pi(jj)
continue

print*,'generate and normalize the sum of pi to 1'
sumn -- 0.0

do 456 i= 0,m

sumn- pi(i) + sumn
continue

do 567 i = 0,m

pi(i) = pi(i)/sumn

print*,'pi(',i,') = ',pi(i)
continue

sumn = 0.0

do 1456 i = 0,m

sumn=pi(i)+ sumn

1456 continue

print*,'pi(total) = ',sumn

***** numerator of throughput equation ****
snum = 0.0

do 78 i= 0,m

snum = snum + pi(i)* ps(i)
continue

snum - snum* id

**** denomenator of throughput equation ****
sden = 0.0

do 87 i= 0,m

mi = m-i

del = xnd** i*sigd** mi

deli = 1./(1.-del)

print*,'deli = ',deli

sden = sden + pi(i)*(deli + 1. + ps(i)* (id-iga) + iga)
continue

***** throughput ****
s = snum/sden

print*,'throughput = ",s,'nu = ",xn,'packet = ',id,'st = ',m

print*,'snum = ',snum

print*,'sden = ',sden

**** Delay ****

do 904 j = 0,m

do 906 k = 0,m

if(j.eq.k)then

dnd(j,k) = 1.0
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else
dnd(j,k) = 0.0
end if

906 continue

904 continue

call matad(m,dnd,xq,dnd)

call matad(m,dnd,sumt,sumt)

call matad(m,dnd,sumg,sumg)

do 71 iv-O,m

ia-O

do 73 i = O,m

xmr(ia) = xsd(iv, i)

xmu(ia) - xff(iv, i)

ia-ia+l

73 continue

do 75 iq-- O,m

ib-O

do 74 j = O,m

xqc(ib) = sumt(j,iq)

xqu(ib) = sumg(j,iq)
ib-ib+l

74 continue

call matm(m,xmr,sum,xqc, iv, iq,idd)

sumt(iv,iq) = sum

call matm(m,xmu.sum,xqu,iv.iq, idd)

sumg(iv, iq) = sum

75 continue

71 continue

call matad(m,sumt,sumg,sumt)

suma = O.

tempa = O.
do 108 i = O,m

mi = m-i

suma = O.

do 208 j = i,m

print*,'sumt(',i,j,') = ',sumt(i,j)

suma = suma + real(j)*sumt(i,j)

208 continue

a(i)--suma

print*,'A(',i,') = ',a(i)

del = xnd* * i* sigd* * mi

print*,'i = ',i

print*,'reali = ',real(i)
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108

deli = real(i)/(1.-del)

xna = deli + a(i)

print*,'xna = ',xna
tempa = tempa + xna* pi(i)
print*,'tempa(',i,') = ',tempa
continue

delay = tempa/snum
print*,'delay = ',delay,'sigma = ',sig

print*,' '
stop
end

C

subroutine bino(rmm,rkk.sig,r)
ridl = rmm-rkk

sigd = 1.-sig

r= (sig**rkk)*(sigd**ridl)
rn = rmm

call fact(rn,mr)
mum = mr
rn = rkk

call fact(rn,mr)
lTldn = l-nr

ridl = rmm-rkk

rn = ridl

call fact(rn,rnr)
mdn = rndn* rnr

r = r* rnum/rndn
return

end

subroutine fact(rn,rnr)
rnr = 1.

do 11 ri = O,rn-2.

mr = rnr*(rn-ri)

print*,'rnr = ".rnr
11 continue

return
end

subroutine matm(m,xmr, sum,xqc,iv, iq,idd,igap)

double precision xmr(O: lO0),xqc(O: 100)
sum-O.O

do 99 ip- O,m

sum = sum + xmr(ip)*xqc(ip)
99 continue
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38

37

return

end

subroutine matad(m,xml,xm2,xr)

double precision xml(0:100,0:100),xm2(0:100,0:100)

double precision xr(0:100,0:100)

do 37 ia = 0,m

do 38 ja = 0,m

xr(ia,ja) = xml(ia,ja) + xm2(ia,ja)
continue

continue

return

end

C.3 Math Model Program Outputs

The output of several trials of the math model program are presented in Tables

C.1 and C.2. The values for Xpp(i,k) indicate the probability that given there are i sta-

tions in backlog at the beginning of a transmission there will be k stations in backlog at

the completion of the transmission. The value FI(i) indicates the probability that i sta-

tions will be in backlog. The values of other intermediate probabilities, such as the

probability of success given i stations in backlog, Ps(i), are not tabulated but several of

each type were calculated by hand to debug the program. The values ofv are fixed and

this varies from the Ethernet and MFA protocols where the backoff interval is set by

the station and changes as system load changes.

The values for xpp(i,k), and Fl(i) follow the correct trends and except for FI(i)

for large values of i where the value is negative. The value for throughput, S. is a good

approximation. The values for delay, D. should be larger than one since they are nor-

malized to the packet transmission time. The values for throughput are correct and

the average number of stations in backlog while the channel is idle is correct. For large

packet sizes, ps, the delays are above one. The model gives poor performance when

the average transmission time is less than 10 slot times.
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Table C.I State Transition Probabilities

P

ps

i,k

0,0

1,0

1,1

2,1

2,2

3,2

3,3

4,3

4,4

10,9

10,10

11,10

11,11

12,11

12,12

13,12

13,13

14,13

14,14

15,14

15,15

19,18

19,19

20,19

20,20

3"

D

0.1000

0.1000

10

0.8965

0.8486

0.1360

0.8317

0.1556

0.7992

0.1892

0.7636

0.2255

0.5584

0.4338

0.5279

0.4649

0.4985

0.4949

0.4704

0.5237

0.4435

0.5513

0.4177

0.5779

0.3261

0.6729

0.3059

0.6941

0.0999

1.2809

0.1000

0.1500

10

0.8965

0.8648

0.1214

0.8141

0.1736

0.7553

0.2329

0.6970

0.2915

0.4064

0.5845

0.3687

0.6229

0.3338

0.6585

0.3016

0.6915

0.2721

0.7219

0.2450

0.7498

0.1585

0.8404

0.1416

0.8584

0.0999

1.2576

0.1000 0.5000

0.0500 0.1000

16 16

0.8965

0.8035

0.1768

0.8326

0.1529

0.8315

0.1561

0.8224

0.1666

0.7350

0.2585

0.7195

0.2746

0.7040

0.2908

0.6886

0.3068

0.6733

0.3227

0.6582

0.3385

0.5993

0.4000

0.5851

0.4149

0.0998

1.3581

0.3000

0.1000

0.7205

0.6162

0.2985

0.6422

0.2916

0.6353

0.3077

0.6194

0.3298

0.4920

0.4795

0.4708

0.5037

0.4499

0.5275

0.4295

0.5507

0.4097

0.5733

0.3904

0.5954

0.3190

0.6781

0.3027

0.6973

0.2976

1.7199

0.5790

0.4515

0.3673

0.4970

0.3612

0.5054

0.3733

0.5026

0.3907

0.4335

0.5122

0.4198

0.5323

0.4060

0.5522

0.3922

0.5717

0.3784

0.5910

0.3648

0.6100

0.3121

0.6830

0.2995

0.7005

0.4842

2.4911

0.1000

0.1000

10

0.8915

0.8177

0.1606

0.8146

0.1675

0.7873

0.1960

0.7546

0.2295

0.5556

0.4323

0.5256

0.4632

0.4967

0.4931

0.4689

0.5219

0.4423

0.5496

0.4168

0.5763

0.3259

0.6726

0.3059

0.6941

0.1000

1.4398

0.1000

0.1000

48

0.9019

0.8854

0.1065

0.8514

0.1418

0.8126

0.1813

0.7737

0.2208

0.5614

0.4354

0.5304

0.4668

0.5006

0.4968

0.4721

0.5257

0.4449

0.5533

0.4188

0.5796

0.3263

0.6733

0.3060

0.6940

0.1003

1.1729
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Table C.2 Performance Characteristics of the Network

CI

ps

i

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

S

D

0.1000

0.1000

16

0.8827

0.1076

0.0104

0.0004

-0.0000

-0.0000

-0.0000

-0.0000

-0.0001

-0.0001

-0.0001

-0.0001

-0.0001

-0.0001

--0.0001

-0.0001

-0.0001

-0.0001

-0.0001

--0.0001

-0.0001

0.0999

1.2809

0.1000

0.1500

16

0.8851

0.1059

0.0104

0.0004

-0.0000

-0.0000

-0.0001

-0.0001

-0.0001

-0.0001

-0.0001

-0.0001

-0.0001

-0.0001

-0.0001

-0.0001

-0.0001

-0.0002

-0.0002

-0.0002
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